Альтернативные способы добычи электроэнергии. Тепловые насосы для отопительных систем частных домов. Отопление для частного дома: альтернативные источники энергии

10.07.2019

Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики : солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.

Солнечная энергетика - преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.

Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат "солнечный котел", турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей : низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика - способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.

Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2-3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.

Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

Стоимость "топлива" такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.

К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика - это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция - установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.

Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика - способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.

По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью . Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха - до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн - перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.

Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент-температурная энергетика . Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.

Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.

Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика . При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.

Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших "чанов", куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.

Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.

Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.

Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).

Основным недостатком эффекта восстановления формы является низкий КПД - всего 5-6 процентов.

Материал подготовлен на основе информации открытых источников

Время не стоит на месте. В глубокой древности люди использовали как источник энергии только собственные силы, или, по возможности, силы домашних животных. Потом первым внешним источником энергии, который научились использовать люди, был огонь. Все, что вначале умели получить от огня, это приготовление еды и обогрев своего жилища. Сегодня на службе у человечества находятся источники энергии, которые превышают человеческую силу в миллионы раз. Сейчас мы готовим еду не только с помощью огня, специальной техникой поднимаем тонны грузов, используя ракеты, покоряем космос, заглядываем в глубины Земли и строим миллионы городов. Тем не менее, в мире все чаще возникают локальные энергетические кризисы, связанные с недостатком энергетических ресурсов.

Закон энергии

Энергия никогда не исчезает, она может менять форму и накапливаться. Например, растения нуждаются в солнечном свете, они превращают солнечную энергию и накапливают ее. Вместе с тем, они отдают ее нам в виде съедобных продуктов, люди и животные потребляют эти растения и превращают эту энергию, которая в них накапливается, например, в мышечную работу. С другой стороны, при сжигании дров на костре также освобождается энергия, происходящая от Солнца. Кроме того, все ископаемые ресурсы планеты, прежде всего уголь, природный газ, нефть являются накопителями солнечной энергии. Все эти топливно-энергетические ресурсы образовались из останков животных и растений, которые существовали миллионы лет назад, под действием давления и чрезвычайно высокой температуры в земной коре.

Средневековому человеку показалось бы волшебством, если бы перед его глазами кто-нибудь добыл свет из угля или привел бы в движение машину с помощью нефти. Но это волшебство заключается только в том, чтобы сделать возможным накопление энергии и переход ее из одной формы в другую. В наше время этот процесс стал для всех настолько обычным, что мало кто задумывается об энергетической проблеме и о тех ресурсах, которые мы для этого берем. С того времени, когда человечество начало разгадывать секреты энергии, оно старается добыть энергию с наименьшими затратами. Идеальным вариантом было бы изобрести машину времени, так называемую «перпертум мобиле», которая производила бы энергию сама, получая ее из ничего. Но, к сожалению, такой вечный двигатель, который бы решил все проблемы энергетических ресурсов, создать невозможно. Общее количество энергии всегда остается неизменным, ее нельзя создать, можно лишь освободить накопившуюся энергию и превратить в другую: световую, электрическую, тепловую, физическую, химическую и т. д.

Вода как источник энергии

Человек может использовать мощную силу воды, на некоторых этапах вмешиваться в природный кругооборот воды, чтобы таким образом добывать энергию. Сегодня на гидроэлектростанциях производится электроэнергия, которую можно накапливать или же сразу потреблять по назначению.

Невероятной силы морские волны ежесекундно разбиваются о многочисленные побережья, мощная энергия их выполняет свою работу. Но человечество до сих пор не в силах использовать силу морских волн для производства энергии, хотя существует бессчетное количество теоретических моделей и идей их реализации для решения энергетической проблемы. С недавнего времени, а именно после аварии на Чернобыльской АЭС правительства многих морских государств всерьез заинтересовались этим безопасным источником энергии, до этого проводились испытания в основном в области атомной энергетики.

Уголь

Все виды угля - это результат процесса, длившегося миллионы лет, во время которого останки разнообразной растительности разложились и превратились под действием высокого давления в торф, затем - в уголь. Эти залежи на протяжении миллионов лет все глубже и глубже проникали в земную кору, покрываясь сверху новыми пластами. Например, слой торфа в 50 метров уплотнялся до пласта угля в 3 метра. Первыми, еще в I столетии нашей эры, с помощью угля отапливали свои жилища римляне. Исследователи считают, что торф использовался для отопления еще в доисторический период. И только в XVI веке уголь стали использовать в Европе как топливо.

Уголь и нефть по своему происхождению и химическому составу принадлежат к одной группе. На самом деле из угля так же, как из нефти, можно получить бензин. Этот способ был разработан в Германии во время Второй мировой войны, когда нефти для производства бензина не хватало. Этот метод заключается в том, что в процессе сжигания уголь размельчается и проходит определенные химические процессы, в результате чего получается отличное топливо.

Нефть

Как и другие виды ископаемого топлива, которое человечество сжигает для получения тепла и электроэнергии, нефть имеет чрезвычайно почтенный возраст. Самые старые месторождения нефти были образованы 600 млн лет назад. Нефть заполняла все пустоты и щели земной коры, создавая громадные месторождения. В наше время они активно отыскиваются, бурятся скважины и добываются огромные запасы этих залежей.

Из нефти производят все больше и больше веществ, потребляемых человечеством. Бензин и дизельное топливо - не единственные продукты, потребляемые человеком. Нефть является сырьем для производства лекарств, искусственных тканей, ядов, минеральных удобрений, косметики, пластмассы. Мы даже не подозреваем, насколько человечество зависимо от этих топливно-энергетических ресурсов. Не зря самые богатые страны в мире - это страны-добытчики и производители нефти. В наше время везде господствует нефть. Ни одна другая форма по мощности пока не может заменить нефть как источник энергии.

Природный газ

Газ, используемый для отопления, приготовления еды или производства электроэнергии, - это в большинстве случаев пропан, бутан или природный газ. Он был обнаружен во время бурения первых нефтяных скважин почти случайно. Сегодня природный газ обеспечивает пятую часть мировой потребности в энергии.

Природный газ, который сгорает во время приготовления еды, выделяет энергии в два раза больше, чем электрический ток, производимый тепловыми электростанциями. Природный газ, так же как и уголь, является ископаемым топливом, но по своему происхождению ближе к нефти. Именно поэтому он добывается вместе с нефтью или в виде самостоятельных газовых образований. Проще всего добывать природный газ из месторождений, которые находятся под землей, как на Ближнем Востоке или в Сибири. Безопасность при его выработке обеспечивается системой соединительных труб и вентилей, с помощью которых регулируют давление, так как газовые месторождения постоянно находятся под огромным давлением.

Главные европейские месторождения газа находятся в Италии, Франции и Голландии, а также в Северном море, возле побережья Великобритании и Норвегии. Кроме этого, Россия поставляет сибирский газ разветвленной системой газопроводов в страны Центральной Европы. Россия - главный поставщик газа, из Сибири поступает третья часть всех используемых в мире запасов газа.

Энергия из атомов

Атомную энергию человечество научилось получать на электростанциях путем расщепления ядра атома урана. Именно этот элемент имеет нестабильное ядро и легче всего расщепляется под действием нейтронов. В результате распада ядра освобождаются новые нейтроны, которые, в свою очередь, расщепляют другие ядра атомов. Этот процесс превращается в цепную реакцию и освобождает огромное количество энергии, которая используется для превращения воды в пар, приводящий в движение турбину и электрогенератор. К сожалению, этот способ решения энергетической проблемы небезопасный, вместе с энергией атомных ядер происходит радиоактивное излучение, опасное для всех живых организмов. Поэтому защита с помощью специальных кожухов на таких электростанциях должна быть максимальной.

Мягкие энергии

По мнению ученых, решение энергетической проблемы в будущем за мягкими альтернативными видами энергии. Существуют такие формы, как энергия ветра, биоэнергия и солнечная энергия. Они не тратят полезные ископаемые и не вредят окружающей среде. Еще их называют возобновляемыми источниками энергии. До тех пор, пока существует жизнь на Земле, сила ветра, биоэнергия и солнечная энергия неисчерпаемы, а ископаемые источники в виде угля, газа и нефти когда-нибудь исчезнут.

Биоэнергия

Биоэнергия - энергия, которая вырабатывается из растений. Для животных и людей растения являются самым важным источником энергии и пищевым продуктом. Растения получают запас энергии непосредственно от Солнца, древесина - носитель возобновляемой биоэнергии. Но потребности нашего индустриального общества настолько велики, что вся древесина на планете сможет удовлетворить только небольшую ее часть, не решая проблемы энергетической. Во многих странах древесина выступает основным источником энергии. Неконтролируемая вырубка ведет к уменьшению количества деревьев, поскольку часто для их насаждений не хватает денег. В таком случае этот источник постепенно становится невозобновляемым, что станет одной из причин энергетической проблемы.

Альтернативным и перспективным методом получения энергии считается производство биогаза. Он формируется из разрушенных веществ животного и растительного мира при отсутствии контакта с воздухом. Сельские хозяйства, где собирается в виде отходов много биомассы, могут использовать для производства метана специальные установки биогаза. Работа таких установок не вредит окружающей среде, а их использование не требует никаких затрат. Решение энергетической и сырьевой проблемы именно в таких альтернативных источниках. Но, конечно, сначала они должны быть построены, а первые опыты всегда связаны с большими расходами. Интересный способ расходовать меньше бензин, например, нашли в Бразилии. Они производят биоспирт - жидкость, получаемую из брожения сахарного тростника и кукурузы. Этот алкоголь добавляется к обычному бензину. Таким образом, страна становится менее зависимой от импорта бензина.

Еще один пример использования биоэнергии представляют собой калифорнийские побережья. На морских фермах выращивается одна из разновидностей морских водорослей, которые ежедневно вырастают на полметра. Их также перерабатывают для получения бензина, а другие виды водорослей используют как сырье на тепловых электростанциях, уменьшая энергетическую и сырьевую проблему.

Энергия ветра

Ветер - один из традиционных источников энергии. Еще в VII веке до н. э. в Персии использовали ветряки, а в 1920 году в США впервые ветряк использовали для производства электроэнергии. Еще спустя 10 лет в Австрии и Баварии были построены ветряные установки, которые обеспечивали собственным электричеством целые местности.

Современные силовые установки производят электроэнергию. С помощью силы ветра движутся электрогенераторы, которые питают электросеть или же накапливают энергию в аккумуляторных батареях. По мнению специалистов, использование силы ветра имеет большое будущее, если человечество отдаст предпочтение развитию технологии альтернативной энергетики, а не атомной энергетике и использованию нефти как источника энергии.

Солнечная энергия

С точки зрения производства энергии, мы можем рассматривать Солнце как разновидность атомного реактора чрезвычайной мощности. Только миниатюрная частичка достигает Земли, но даже она дает возможность жизни. Можно ли превращать солнечную энергию непосредственно в электрическую? Да, это вполне возможно с помощью солнечных батарей. Уже сегодня везде, где ярко светит Солнце и потребности в электроэнергии небольшие, получают энергию непосредственно от Солнца. Солнечные батареи - это пластины, которые имеют два чрезвычайно тонких слоя. Один слой состоит из кремния, второй - из кремния и бора. Вместе с солнечным светом, который попадает на солнечную батарею, на ее внешний слой проникают фотоны - мельчайшие частички света, излучаемые Солнцем. Они приводят в движение электроны, перенося их во второй слой и, таким образом, вызывают электрическое напряжение. Перемещаемые электроны попадают в накопитель тока, затем - в электрические проводники. Таким образом, например, станции на солнечных батареях уже решают энергетическую проблему Дальнего Востока.

Солнечные батареи постоянно совершенствуются. Пока они еще очень дорогие, но надеемся, что в недалеком будущем они станут достаточно эффективными и дешевыми и смогут решить глобальную энергетическую проблему, удовлетворить значительную часть потребностей человечества в электроэнергии. Такие солнечные фермы сейчас находятся в нежилых краях из-за чрезвычайной жары. Перспективы использования солнечной энергии огромные, по мнению специалистов, если техника для производства водорода будет дальше развиваться, то накопленную в пустынных районах солнечную энергию можно будет доставлять в виде водорода к странам-потребителям.

Зачем беречь энергетические запасы?

Залежи нефти, угля и природного газа, образованные нашей планетой на протяжении миллионов лет, человечество тратит за несколько лет. Когда мы бездумно тратим эти запасы с увеличением добычи энергоносителей, мы обворовываем своих потомков.

Этим мы нарушаем баланс энергии на Земле, ведь соотношение полученной энергии и отдаваемой обратно в космос должно быть уравновешенным. Если же человечество уничтожает и сжигает энергетические запасы, то образуются газы, которые препятствуют возвращению в космос излишка солнечной энергии. Как результат, возникает глобальная энергетическая проблема - наша планета становится теплее, возникает явление, называемое парниковым эффектом. Парниковый эффект может настолько изменить мировой климат, что произойдет расширение пустынь, образуются опустошающие смерчи, растает лед на полюсах, значительно поднимется уровень моря, множество побережий будут залиты водой.

Кроме того, время истощения энергетических ресурсов уже пришло. Ученые бьют тревогу, доказывая, что энергетических ископаемых запасов хватит на несколько десятков лет, затем потребление энергии снизится и благосостояние человечества тоже. Решение проблемы в быстром переходе общества к разумному потреблению энергетических запасов и разработке новых альтернативных и безопасных методов добычи энергии.


Зачем каждый месяц платить энергокомпаниям за электричество, если можно самостоятельно обеспечивать себя энергией? Все больше людей в мире понимает эту истину. И потому сегодня мы расскажем про 8 необычных источников альтернативной энергии для дома, офиса и отдыха .

Солнечные панели в окнах

В наше время самым распространенным в быту альтернативным источником энергии являются солнечные панели. Традиционно их устанавливают на крышах частных домов или во дворах. Но с недавних пор стало возможным размещать эти элементы прямо в окнах, что позволяет использовать такие батареи даже владельцам обычных квартир в многоэтажных домах.



При этом уже появились решения, позволяющие создавать солнечные панели с высоким уровнем прозрачности. Именно такие энергетические элементы и следует устанавливать в окнах жилых помещений.



К примеру, прозрачные солнечные панели разработали специалисты из Мичиганского Государственного Университета. Эти элементы пропускают 99 процентов проходящего через них света, но имеют при этом коэффициент полезного действия в 7%.

Компания Uprise создала необычную ветряную турбину высокой мощности, которую можно использовать как в быту, так и в промышленных масштабах. Этот ветряк располагается в прицепе, который может передвигать за собой внедорожник или дом на колесах.



В сложенном состоянии с турбиной Uprise можно ездить по дорогам общего пользования. Но в развернутом состоянии она превращается в полноценный ветряк высотой пятнадцать метров и мощностью 50 кВт.



Uprise можно использовать во время путешествий в доме на колесах, для обеспечения энергией отдаленных объектов или обычных частных жилых домов. Установив эту турбину у себя во дворе, ее владелец может даже продавать излишки электричества соседям.



Makani Power – это проект одноименной компании, перешедшей недавно в подчинение полусекретной лаборатории инноваций . Идея данной технологии одновременно проста и гениальна. Речь идет о небольшом воздушном змее, который может летать на высоте до одного километра и вырабатывать электричество.



Летательный аппарат Makani Power оснащен встроенными ветряными турбинами, которые будут активно работать на высоте, где скорость ветра значительно больше, чем на уровне земли. Полученная энергия в данном случае передается по шнуру, соединяющем воздушного змея с базовой станцией.



Энергия будет также вырабатываться от движений самого летательного аппарата Makani Power. Дергая под силой ветра трос, этот воздушный змей заставит крутиться динамо-машину, встроенную в базовую станцию.



При помощи Makani Power можно обеспечить энергией как частные дома, так и отдаленные объекты, куда нецелесообразно проводить традиционную линию электропередач.

Современные солнечные батареи все еще имеют весьма низкий коэффициент полезного действия. А потому для получения от них высоких производственных показателей приходится застилать панелями достаточно большие пространства. Но технология с названием Betaray позволяет увеличить КПД примерно в три раза.



Betaray – это небольшая по размерам установка, которую можно расположить во дворе частного дома или на крыше многоэтажки. В ее основе лежит прозрачная стеклянная сфера диаметром чуть меньше одного метра. Она аккумулирует солнечный свет и фокусирует его на достаточно небольшую фотоэлектрическую панель. Максимальный КПД данной технологии имеет потрясающе высокий показать в 35 процентов.



При этом сама установка Betaray является динамической. Она автоматически подстраивается под положение Солнца на небе, чтобы в любой момент работать на максимуме возможностей. И даже ночью эта батарея вырабатывает электричество, преобразуя свет от Луны, звезды и уличного освещения.



Датско-исландский художник Олафур Элиассон дал старт необычному проекту с названием Little Sun, который объединяет в себе творческое начало, технологии и социальные обязательства успешных людей перед обездоленными. Речь идет о небольшом устройстве в виде цветка подсолнуха, которые в течение дня наполняется энергией от солнечного света, чтобы вечерами нести освещение в самые темные уголки планеты.



Каждый желающий может пожертвовать деньги на то, чтобы солнечный светильник Little Sun появился в жизни какой-нибудь семьи из Страны Третьего Мира. Лампы Little Sun позволяют детям из трущоб и отдаленных деревень отдавать вечера под учебу или чтение, без которых невозможен успех в современном обществе.



Светильники Little Sun можно также приобрести и для себя, сделав их частью собственной жизни. Эти устройства можно использовать при выезде на природу или для создания потрясающей вечерней атмосферы на открытых площадках.



Многие скептики посмеиваются над спортсменами, утверждая, что затрачиваемые ими во время выполнения упражнений силы вполне можно использовать для выработки электричества. Создатели пошли на поводу у такого мнения и создали первый в мире набор уличных тренажеров, каждый из которых является маленькой электростанцией.



Первая спортивная площадка Green Heart появилась в ноябре 2014 года в Лондоне. Электричество, которое вырабатывают на ней любители физических упражнений, можно использовать для зарядки мобильных устройств: смартфонов или планшетных компьютеров.



Излишки энергии площадка Green Heart отправляет в локальные электросети.

Парадоксально, но заставить вырабатывать «зеленую» энергию можно даже детей. Ведь они никогда не прочь что-нибудь вытворить, как-нибудь поиграть и развлечь себя. А потому голландские инженеры создали необычные качели с названием Giraffe Street Lamp, которые используют детскую непоседливость в процессе производства электричества.



Качели Giraffe Street Lamp вырабатывают энергию в то время, когда ими пользуются по прямому назначению. Раскачиваясь в сиденье, дети или взрослые стимулируют работу динамо-машины, встроенной в данную конструкцию.

Конечно, полученного электричества не хватит для полноценного функционирования частного жилого дома. Зато накопленной за день игр энергии вполне достаточно для работы не очень мощного уличного фонаря в течение пары часов после наступления сумерек.

Мобильный оператор Vodafone осознает, что его прибыли становятся больше, когда телефоны клиентов работают круглосуточно, а сами их владельцы не беспокоятся о том, где найти розетку для зарядки аккумуляторов своего гаджета. А потому эта компания спонсировала разработку необычной технологии с названием Power Pocket.

Устройства на основе технологии Power Pocket должны находиться как можно ближее к телу человека, чтобы использовать его тепло для производства электроэнергии для бытовых нужд.



На данный момент, на основе технологии Power Pocket создано два практичных товара: шорты и спальный мешок. Впервые они были опробованы во время музыкального фестиваля Isle of Wight Festival в 2013 году. Опыт оказался удачным, одной ночи человека в таком спальном мешке оказалось достаточно, чтобы зарядить аккумулятор смартфона примерно на 50 процентов.


В данном обзоре мы рассказали лишь про те альтернативные источники энергии, которые можно использовать в бытовых нуждах: дома, в офисе или во время отдыха. Но есть еще немало неординарных современных «зеленых» технологий, разработанных для использования в промышленных масштабах. Про них можно прочитать в обзоре .

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

До недавнего времени основными источниками энергии являлись: нефть, газ, уголь, вода и древесина. Однако природные ресурсы стремительно истощаются, цены на них растут, к тому же выбросы от их переработки оказывают негативное влияние на окружающую среду. По этим причинам многие страны склоняются к внедрению и развитию инновационных решений в области энергетики, которые позволят заменить традиционные виды топлива. В данной статье мы рассмотрим, что такое альтернативные источники энергии, их виды, эффективность и перспективы применения.

Читайте в статье

Альтернативные источники энергии – что это такое

Альтернативный источник энергии (АИЭ) представляют собой экологически чистый возобновляемый ресурс, который при преобразовании позволяет получать тепло или электричество, используемые для повседневных нужд человека. К таким ресурсам следует отнести все существующие виды природных водоёмов, солнце, ветер, тепло из недр земли, биологическое топливо, а также переработанное вторсырьё. Альтернативные источники энергии, в отличие от традиционных видов, могут возобновляться неограниченное количество раз, они более эффективны, дешевле и экологически безопасны.

Возьмите на заметку:

Виды альтернативных источников энергии

В зависимости от возобновляемого ресурса современные источники энергии разделяются на несколько видов, которые определяют способы её преобразования и типы установок, предназначенных для этого. Рассмотрим кратко альтернативные источники энергии и их характеристики.


Использование альтернативных источников энергии – солнце и ветер

Преобразование энергии солнца при помощи специальных устройств позволяет получать тепло и электричество для дальнейшего использования. Электрическая энергия генерируется благодаря физическим процессам, которые происходят в кремниевых полупроводниках солнечных панелей под воздействием солнечных лучей, а тепловая – свойствам газов и жидкостей.


Использование ветра в качестве альтернативного источника энергии основано на преобразовании силы воздушных потоков в электричество при помощи специальных генераторных установок. Ветрогенераторы имеют различную конструкцию и габариты, а также отличаются и по месту расположения. Ветер приводит в движение лопасти, которые, в свою очередь, вращают генератор, вырабатывающий электроэнергию.


Вода и тепло Земли на службе человека

Силу воды для получения электроэнергии человек научился использовать уже давно. Раньше для этого строились гидроэлектростанции, которые перекрывали реки, это были как небольшие, так и грандиозные сооружения. С развитием технологий конструкции гидроэлектростанций изменились, и теперь появилась возможность получать электричество не только за счёт силы речного потока, но и благодаря приливам морей и океанов (приливные станции). Вода падает на лопасти турбин, вращающих генератор, который вырабатывает электроэнергию, поступающую к потребителю.


В недрах нашей Земли скрыты огромные запасы тепла, которые позволяют заменить более дорогостоящие и «грязные» источники энергии. Это направление называется геотермальной энергетикой, в которой используют четыре основных вида теплоресурсов:

  • поверхностное тепло земли;
  • энергия пара и горячей воды, находящиеся у поверхности земли;
  • тепло, сконцентрированное глубоко в недрах планеты;
  • энергия магмы и тепла, скапливаемого под вулканами.

Внутреннее тело земли используется для отопления домов и производства электричества. Его запасы в 35 млрд раз превышают годовую потребность в энергии во всём мире. Первая геотермальная электростанция мощностью в 7,5 МВт была введена в Италии в 1916 году. На данный момент себестоимость электроэнергии, вырабатываемой ТеоТЭС, практически равна той, что производится угольными ТЭС.


Геотермальная электростанция Хеллишейди в Исландии – хороший проект альтернативного источника электроэнергии

Биотопливо – альтернатива бензину

Биотопливо является альтернативным источником энергии, которая получается вследствие переработки органического сырья или отходов. Этот вид топлива может быть в твёрдом, жидком или газообразном состоянии. В качестве твёрдого биотоплива используется дерево, брикеты и пеллеты из её отходов древесины или сельхозпродукции (лузга подсолнечника и гречихи, ореховая скорлупа и т.д.). Данное топливо используют для выработки тепловой и электрической энергии на ТЭС.


Жидкое биотопливо получают путём переработки растительной массы определённых сельскохозяйственных культур и их отходов (солома) и используют в основном в качестве горючего для автомобилей. К этому виду экотоплива можно отнести:

  • биоэтанол;
  • биометанол;
  • биобутанол;
  • биодизель;
  • диметиловый эфир.

Газообразное экотопливо бывает трёх видов: биогаз, биоводород и метан. Его получают посредством брожения биологической массы. Сырьё подвергается воздействию особых бактерий, которые разлагают биомассу, и вследствие этого вырабатывается газ.


Развитие альтернативных источников энергии

По данным Минэнерго РФ, доля использования альтернативных источников энергии в России составляет всего лишь 1%. Планируется увеличить данный показатель к 2020 году до 4,5%, за счёт привлечения не только средств правительства Российской Федерации, но и частных предпринимателей. Развитие альтернативной энергетики имеет большой потенциал:

  • ввиду малой заселённости морских и океанских побережий Камчатки, Чукотки, Сахалина и других территорий возможно развитие ветровой и приливной энергетики;
  • актуально развитие солнечной энергетики, особенно в Ставропольском и Краснодарском крае, на Северном Кавказе, Дальнем Востоке и пр.

К сожалению, альтернативная энергетика не является приоритетным направлением российской промышленности. Основной проблемой является финансирование подобных проектов. Иногда добыча угля и нефти обходится дешевле, чем строительство ветрогенераторных и солнечных электростанций.

Альтернативные источники энергии для частного дома

Владельцы частных домов, благодаря использованию альтернативных источников энергии, могут существенно снизить расходы по коммунальным счетам или полностью отказаться от услуг поставщиков газа, электричества и тепла. Также имеется возможность не только сделать своё хозяйство энергонезависимым, но и реализовывать излишки. Государство всячески поощряет развитие и использование установок альтернативных источников энергии рядовыми гражданами. Для получения тепла и электричества при помощи нетрадиционных источников энергии можно использовать заводское оборудование или сделать его своими руками. Итак, альтернативная энергетика позволяет:

  • преобразовывать солнечную энергию в электричество или тепло для горячего водоснабжения и низкотемпературного отопления;
  • с помощью специальных генераторов получать электроэнергию, используя силу ветра;
  • с помощью специальных насосов забирать из земли, воды и воздуха тепло и отапливать дома и вырабатывать электроэнергию посредством теплогенераторов;
  • получение газа из отходов сельхозпродукции, биологических материалов и продуктов жизнедеятельности домашних животных и птиц.

Наибольшая эффективность достигается путём использования нескольких видов источника альтернативной энергии.

Солнечная энергия как альтернативный источник энергии

Использование энергии солнца позволяет получать при помощи солнечных полупроводниковых панелей и коллекторов электричество и горячую воду для отопления и ГВС. Под воздействием света на кремниевые элементы возникает направленное движение электронов (электрический ток). Соединив достаточное количество панелей, можно получить электричество, которое хватит для обеспечения нужд одного дома. Так, например, солнечная батарея площадью 1,4 м2 при хорошей освещённости выдаёт 24 В при мощности порядка 270 Вт. Поскольку солнце светит не всё время и с разной силой, то невозможно подключить бытовые приборы напрямую к преобразующим панелям. Для того чтобы пользоваться электричеством от солнечных батарей, нужна целая система, включающая в себя:

  • аккумулятор (АКБ) для накопления излишков электроэнергии (задействуется в тёмное время суток и ненастную погоду);
  • контроллер (необязателен, но рекомендован) предназначен для мониторинга уровня заряда АКБ, чтобы не допустить полной разрядки или перезаряда, а также для оптимизации работы солнечных панелей;
  • инвертор , преобразующий постоянный ток в переменный и позволяющий получить напряжение в 220−230 В.

Для того чтобы сделать дом или дачу полностью независимым от централизованного электроснабжения, необходимо установить большое количество батарей и несколько аккумуляторов. Это, конечно, недёшево, но в итоге полностью окупается за сравнительно короткий срок. Набор панелей для выработки 1500 Вт в сутки, чего хватит для обеспечения дачи или некоторых электроприборов в доме, стоит порядка 1 000 $, для производства 4 кВт – около 2 200 $, а 9 кВт – 6 200 $. Можно купить небольшую установку и впоследствии дополнить её новыми солнечными батареями, добившись требуемой мощности.


Альтернативные источники электроэнергии для частного дома – солнечные панели

Итак, мы уже рассмотрели, что солнечная энергия может использоваться для получения электроэнергии (полупроводниковые панели) и тепла для отопления и горячего водоснабжения (коллекторы). Разберём, что представляют собой солнечные батареи. Солнечная батарея состоит из определённого количества кремниевых фотоэлементов (бытовые модели). Такие панели имеют КПД в 20−24% и сравнительно невысокую стоимость. Фотоэлементы соединяются между собой, и их контакты выводятся на клеммы, находящиеся на закрытом корпусе каждой батареи. Корпус изготавливают из анодированного алюминия, а лицевую панель − из прочного стекла высокого качества и покрытого антибликовым составом.


Статья по теме:

Что такое, принципы работы и виды солнечных батарей для частного дома, стоимость комплекта, отзывы, технические характеристики, рекомендации специалистов — читайте в публикации.

Солнечные коллекторы – достойная замена традиционным водонагревателям

Солнечные теплоколлекторы позволяют накапливать 600−800 Вт/ч с одного квадратного метра и обеспечить дом достаточным количеством энергии для отопления и ГВС. Конструкционно коллекторы разделяются на следующие основные группы:

  • вакуумные . Плоские или многотрубные конструкции с естественной или принудительной циркуляцией теплоносителя в системе. В основном это стационарные коллекторы, предназначенные для сезонного использования;
  • воздушные солнечные системы , которые являются наиболее лёгкими и простыми. Тепло с нагретой поверхности коллектора снимается потоком воздуха;
  • в третьем варианте тепло от солнечных коллекторов может использоваться для трансформации его в электроэнергию.

Последний вариант не пользуется особой популярностью среди рядовых потребителей из-за сложности обслуживания и высокой стоимости оборудования.


Тепловые насосы для отопительных систем частных домов

В настоящее время для отопления домов и обеспечения их горячим водоснабжением в основном применяют различные виды котлов – твердотопливные, дизельные, газовые и электрические. Сравнительно недавно появился ещё один способ нагрева жидкости при помощи теплового насоса, но пока он ещё не получил достаточно широкого применения. Теплоноситель, двигаясь по путепроводу, проложенному в грунте на определённой глубине, нагревается на несколько градусов и поступает в испаритель. Далее нагретая жидкость отдаёт тепло хладагенту, который при низких температурах превращается в пар и поступает в компрессор. В компрессоре он сжимается, что приводит к увеличению давления и, соответственно, повышению температуры.

Сжатый нагретый хладагент перемещается в конденсатор, где отдаёт тепло другому теплоносителю (воздух, вода или антифриз). В результате этого процесса происходит охлаждение хладагента и возврат его в жидкое состояние. После этого жидкость поступает в испаритель, и весь цикл повторяется.


Принцип работы теплонасоса

Статья