Кинетическая энергия в электрическую как сделать. Что можно сказать о методах прямого преобразования энергии? Принципы преобразования механической энергии в электрическую и обратно

11.10.2019

Закон сохранения энергии поистине незыблем, и многовековой опыт науки и техники приучил ученых опираться на него как на основу. Колоссальное количество технических устройств, перечислять которые можно было бы бесконечно, создано человечеством на данный момент с опорой на фундаментальные законы природы и целой вселенной. Лишь единицы, из великого множества таких устройств, можно упомянуть в качестве примера.

Лук и стрелы, колесо, весло, парус, рычаг, компас, порох, микроскоп и телескоп, паровая машина, телеграф, динамит, и электрический двигатель, лампа накаливания, трансформатор, аккумулятор, атомная бомба, транзистор, лазер, искусственные спутники и космические аппараты.

Везде строго соблюдается закон сохранения энергии: натягивая тетиву лука, человек совершает работу, при этом дуга лука запасает потенциальную энергию, которая затем преобразуется в кинетическую энергию летящей с большой скоростью стрелы; колесо, весло и рычаг ведут нас к передачам и редукторам, к преобразованию крутящего момента, сил и угловой скорости, и здесь снова имеет место преобразование энергии; аккумуляторная батарея позволяет преобразовывать химическую энергию в электрическую, а генератор - механическую энергию в электрическую и т.д.

Всюду происходит преобразование энергии. Безусловно, можно сказать, что механическая энергия расходуется, а электрическая энергия возникает, словно создается, если речь идет об электрическом генераторе, но ведь это непрерывный процесс именно преобразования энергии - непрерывного ее перехода из одного вида в другой.

Хотя нарушений закона сохранения энергии нигде в природе явным образом не проявлялось, многие изобретатели прошлого, включая великого Леонардо да Винчи, много раз делали, попытки построить такое устройство, которое могло бы совершать работу бесконечно, не потребляя при этом никаких энергетических ресурсов (так называемый вечный двигатель первого рода).

И современные исследователи продолжают делать такие попытки. Ученые же говорят, что это невозможно просто потому, что тогда бы нарушалось первое начало термодинамики, которое гласит: «в любой изолированной системе запас энергии остаётся постоянным». И действительно, представьте себе систему, полностью изолированную от окружающей среды так, что ни вещество, ни энергия в каком бы то ни было виде, не могут ни поступать в нее, ни выходить из нее.

Даже если элементарно попытаться представить, существующей в реальности, такую изолированную систему, внутри которой что-то происходит, преобразуется энергия, идут какие-то процессы, а снаружи все как было, так и есть без изменений, то какой был бы в этой системе смысл? Никакого.

Идея вечного двигателя второго рода также не состоятельна по причине противоречия второму началу термодинамики, которое гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара».

В свое время на поприще прославился один европейский умелец Иоганн Эрнст Элиас Бесслер, известный как Орфериус. В 1717 году, вероятно, желая сыскать мировой славы и денег, он демонстрировал публике самодвижущееся четырехметровое деревянное колесо, которое непрерывно вращалось на оси, несмотря на видимое отсутствие снаружи приводных механизмов.

За раскрытие секрета изобретатель просил очень крупную, по тем временам, сумму денег. Многие ученые приходили и убеждались в том, что колесо без остановки вращалось, и продолжало вращаться даже спустя два месяца после первой демонстрации. Это был настоящий фурор, слухи разнеслись и за пределы Европы.

Даже Петр Первый запланировал поездку к изобретателю на 1725 год. Однако, еще до поездки Петра в Германию, на родине изобретателя со скандалом выяснилось, что колесо приводила во вращение его служанка, вместе с братом Орфериуса. Полая конструкция большого колеса все же имела скрытую передачу, шнурок от которой шел в специально приспособленную секретную комнату. После разоблачения изобретатель своими руками разрушил колесо и покинул свой город.

Вернемся к сегодняшнему дню. Если набрать в поисковике на Youtube «free energy» или , то станет очевидным обилие в современном мире реализаций так называемых . Как правило, это автономные конструкции, совершающие электрическую работу в виде питания ламп накаливания или электродвигателей.

Начиная примерно с 2011 года, в сеть Интернет регулярно попадают видеозаписи, на которых некий электрический или электромеханический преобразователь подключается на несколько секунд к аккумулятору, батарейке или к сети 220 вольт, после чего питание отключается, а устройство отдает мощность в нагрузку и буквально «питает само себя».

Бывают и совсем немыслимые варианты на постоянных магнитах, сообщающих непрерывное вращение ротору генератора с подключенной к нему нагрузкой в виде ламп. Это кажется невероятным, поскольку складывается впечатление, что либо устройство неведомым образом производит энергию, нарушая все известные физические законы, либо автор видеозаписи умышленно вводит публику в заблуждение, пытаясь таким образом развлечься или мошенническим путем получить доход.

Но невольно возникает вопрос о целесообразности таких поступков, ведь на роликах много не заработаешь, а публичные демонстрации фальшивок рано или поздно будут разоблачены. Кому и зачем нужно заниматься этими сомнительными трюками?

Зачастую изобретатели утверждают, что энергия, которую преобразуют их устройства - это энергия из окружающей среды, - та энергия, которую при определенных условиях можно собирать и преобразовывать хоть в постоянный, хоть в переменный ток нужного напряжения.

Большое значение уделяется явлению электрического резонанса, качеству заземления, и применению высокого напряжения, благодаря чему, как утверждают изобретатели, и создаются условия для поступления энергии в их устройства.

Также постоянно фигурирует имя знаменитого ученого . И действительно, электрический резонанс в электрическом преобразователе - это то условие, когда преобразователь работает с наибольшей эффективностью, именно так говорил и писал сам Тесла о своих преобразователях.

Кроме того, один из исследователей этого нового направления, на одной из первых, наделавших много шума, демонстраций, утверждал, что именно развивая схемы Тесла, ему удалось получить этот невероятный эффект. Он смог преобразовать энергию из окружающей среды в удобную для использования форму. Этот гениальный изобретатель из Грузии вдохновил своим успешным примером многих экспериментаторов по всему миру на самостоятельные исследования.

Еще одним последователем Тесла, развивающим его идеи относительно генерации, преобразования и передачи электрической энергии, был (совсем недавно умер своей смертью в возрасте около 90 лет) американский исследователь Дональд Ли Смит, который, много лет будучи работником нефтяной промышленности, занимался изучением всех доступных теоретических данных об энергии, электрическом и магнитном полях Земли, и строил на основе своих представлений высоковольтные резонансные устройства, которые могли также служить приемниками энергии из окружающей среды.

Развивая идеи Тесла, Смит построил более 200 различных устройств, каждое из которых могло питать электрическую нагрузку гораздо большей мощности, чем само устройство потребляло, например, от аккумуляторной батареи.

На публичной демонстрации в 1996 году Смит продемонстрировал широкой аудитории одно из таких устройств, которым он запитал 10 ламп накаливания по 100 Ватт, причем самому устройству требовалось лишь заземление и пусковой источник энергии в виде аккумулятора на 12 вольт, емкостью 6 ампер-часов.

Специалисты, проводившие замеры, констатировали, что если бы устройство работало просто по принципу повышающего инвертора, то батарея должна была бы давать ток силой 83 Ампера, что нереально для такой маленькой батареи, которая применялась для запуска.

Разработки Смита также вдохновляют многих экспериментаторов, и есть случаи успешных повторов его устройств во многих странах мира.

Как на территории бывшего Советского Союза, так и в Европе есть, ставшие уже известными, благодаря своим работам, экспериментаторы - радиолюбители, демонстрирующие подобные электрические установки, которые, будучи приведены в действие от батарейки, способны отдавать в нагрузку по несколько киловатт электрической энергии. Как и в предыдущих случаях, утверждается, что главное в устройствах - резонанс, высокое напряжение, и качественное заземление.

Здесь будет уместным вспомнить о том, что наша планета обладает очень большим отрицательным электрическим зарядом, а верхние слои атмосферы, ионосфера, вплоть до термосферы, в силу сильной ионизации космическими лучами, - большим положительным электрическим зарядом.

Вполне возможно, что именно эта энергия каким-то образом преобразуется устройствами в приемлемый для использования вид, ведь и у поверхности земли электрическое поле обладает некоторой реальной напряженностью. Демонстрации проводятся в самых обычных бытовых условиях, поэтому вполне закономерны и логичны сомнения и гневные комментарии к ним от многих пользователей Интернет, просматривающих эти видео.

Встречаются и механические варианты необычных генерирующих устройств, когда привод осуществляется посредством асинхронного или коллекторного двигателя, затем осуществляется понижение оборотов передачей, с увеличением крутящего момента, который затем передается на вал многополюсного (низкооборотного) генератора постоянного или переменного тока. Генератор питает нагрузку и приводной двигатель.

Это кажется невозможным, однако есть случаи очень убедительных свидетельств о том, что та или иная компания в той или иной стране выпускает такие системы, сдает их в аренду или даже продает. Примером может служить установка, недавно продемонстрированная в Румынии.

Автор произвел запуск механической системы от розетки, а затем воспользовался энергией, которую развило устройство, для питания болгарки, циркулярной пилы и мощного . Стабилизирующий маховик, вращение которого можно было отчетливо наблюдать, продолжал вращаться, показывая, что определенный уровень энергии все время поддерживается в процессе работы установки. Разумеется, шквал критики обрушился и на этого изобретателя.

Как утверждает сам румынский исследователь, его устройство работает благодаря механике.

Между тем встает вопрос о том, правомерно ли вообще считать разные виды энергии и работы полностью тождественными? Может быть, в этом кроется причина реальной возможности построения таких устройств альтернативной энергетики?

В прочем, здесь мнений может быть масса. Факт остается фактом - природа таит в себе еще много загадок, о которых не написано в учебниках, и которые человечеству еще предстоит изучить и направить в полезное русло. Верить или не верить - каждый пусть решает сам.

С момента выхода в свет Toyota Prius стукнуло уже за 20 лет, и с тех пор концепция рекуперативного(регенеративного) торможения стала достаточно известной, как метод повышения дальности пробега в гибридных и электрических транспортных средствах. Но знаете ли вы, что применение не ограничивается EV автомобилями? В наши дни вы можете найти ее во всем, в том числе велосипедах, скейтбордах и самокатах.

(демонстрация системы рекуперации энергии в bmw )

Давайте же разберемся, как работает эта технология, насколько она продуктивна в различных средствах передвижения и разумно ли везде ее устанавливать.

Что такое рекуперативное торможение

Движущиеся объекты обладают кинетической энергией, а когда применяется тормоз для замедления, всей этой мощи необходимо куда-то идти.

Вернемся немного в прошлое, давние времена эры неандертальцев или просто машин с ДВС. В таких автомобилях тормоза основаны исключительно на трении, поэтому при замедлении вся энергия превращается в тепло, а значит уходит в никуда, просто теряется в окружающей среде.

Но мы все же эволюционировали и нашли пути получше. Регенеративное торможение использует мотор электромобиля в качестве генератора для преобразования основной доли кинетической энергии, теряемой при замедлении, назад в батарею. В следующий раз, когда машина ускоряется, она расходует часть энергии, ранее сохраненную от рекуперативного торможения.

(Регенеративная система bmw i3)

Важно понять, что регенеративное торможение не является магическим увеличителем диапазона пробега электромобилей. Оно не делает машины более эффективными как таковые, а просто делает их менее неэффективными. В принципе, самым лучшим вариантом езды будет разгон до постоянной скорости, а затем никогда не касаться педали тормоза. Поскольку чтобы замедлиться, а потом снова вернуться к прежней скорости, потребуются лишние затраты сил, то вы получите куда больший диапазон хода, в первую очередь просто не замедляясь.

Но, очевидно, что это не реалистично. Так как нам приходится снижать скорость многократно, рекуперация - это следующий лучший вариант, так как она делает этот процесс менее бесполезным.

Насколько хорошо рекуперативное торможение

Чтобы правильно оценить данную технологию, нам нужно посмотреть на два разных параметра: коэффициент полезного действия(КПД) и эффективность. Несмотря на кажущееся сходство, они совершенно разные. КПД говорит о том, с каким успехом захватывается «потерянная» мощность торможения. Все превратилось в тепло или удалось перевести кинетический потенциал в нужное русло? С другой стороны, эффективность относится к тому, как сильно влияет регенеративное торможение на длину пути. Значительно ли увеличится ваш диапазон, или вы даже не заметите большой разницы?

(визуализация работы системы рекуперация энергии торможения в машинах VW - Volkswagen)

КПД

Никакая машина не способна достичь коэффициента полезного действия в 100% (без нарушения законов физики), так как любая передача энергии неизбежно повлечет за собой потерю в форме тепла, света, шума и т. д. КПД процесса зависит от многих факторов, таких как двигатель, батарея и контроллер, но часто значение оценивается в районе 60-70%. По словам Tesla , их технология обычно теряет 10-20% кинетического потенциала при попытке его захватить, а затем еще 10-20% при преобразовании отложенных запасов обратно в ускорение. Это довольно стандартные числа для основной массы электрических транспортных средств, включая машины, грузовики, велосипеды, самокаты и т. д.

Отметим, что эти 70% не говорят нам, что регенеративное торможение даст 70% -ный рост пути от одного заряда. Технология не приведет к увеличению диапазона от 100 км до 170 км. Это лишь означает, что 70% кинетической энергии, потерянной во время торможения, может быть снова возвращено.

Поэтому рассмотрение лишь КПД системы мало что значит. Что должно нас больше заинтересовать, так это эффективность рекуперативного торможения.

Эффективность

Здесь все куда интереснее. Эффективность рекуперативного торможения - это показатель того, насколько система способна увеличить запас хода транспортного средства.

Как вы, наверное, уже догадались, показатель значительно варьируется в зависимости от факторов, включая условия движения, местность и размер транспортного средства.

Немалое влияние оказывают условия вождения. Вы увидите значительно лучшую отдачу в городе, где приходится многократно сбрасывать скорость на светофорах или в пробках, чем на шоссе. Ландшафт также играет весомую роль. Подъем в гору не дает вам много шансов на остановку, а вот при спуске для безопасности часто нужно притормаживать, что позволит преобразовать больший объем кинетических запасов. На длинных склонах рекуперативная система может применяться почти без остановок, чтобы регулировать скорость, тем самым заряжая аккумулятор в течении продолжительного промежутка.

Размер транспортного средства может быть самым значительным фактором для данного показателя по той простой причине, что более тяжелые тела содержат в себе гораздо больший импульс и кинетическую энергию. Подобно тому, как большой маховик является более эффективным, четырехколесный автомобиль имеет куда больше кинетической энергии при движении, чем мотоцикл или самокат.

Эффективность системы регенерации в автомобилях

Данные для сравнения могут быть несколько сложными. Машины Tesla выдают мощность рекуперативного торможения в 60 кВт при жесткой остановке, но это не отвечает на более интересный вопрос. Мы хотим знать, сколько энергии мы регенерируем во время поездки, а не насколько сильны наши тормоза каждый раз, когда мы месим педаль.

К счастью, ряд водителей Tesla смогли посчитать возврат энергии, используя различные приложения для отслеживания данных. Владельцы Model S сообщили о возмещении около 32% от общего потребления энергии в момент подъема, а затем спуска на холмистой местности. Таким образом, при таком коэффициенте ход увеличивается со 100 до 132 км. Другой собственник рассказал о регенерации 28% энергии (форум на датском языке). Остальные же пишут , что во время обычных поездок возвращается в среднем 15-20% от общего потребления.

Другие автопроизводители также использую данную систему в своих машинах. Например Audi говорит , что технология рекуперативного торможения, установленная в Audi Q7 позволит сэкономить до 3% топлива. Но если брать только электромобили, то .

Эффективность рекуперативного торможения в велосипедах, самокатах, скейтбордах и других персональных EV

Для небольших электрических транспортных средств цифры не столь оптимистичны. На многих велосипедах с функцией рекуперативного торможения средним показателем является 4-5% регенерации, максимум 8% в холмистых районах. Другие персональные электромобили, включая самокаты и скейтборды, имеют схожие результаты.

Как мы писали выше, столь небольшие цифры во многом связаны с меньшим весом данных средств. У них просто нет большого импульса и, следовательно, они имеют меньшую кинетическую энергию для преобразования обратно аккумулятор.

А это вообще важно, насколько хорошо работают рекуперативные тормоза?

В индустрии электрических велосипедов регенеративное торможение иногда может использоваться скорее как маркетинговый инструмент, чем как целесообразное нововведение. Поскольку технология, как правило, возможна только в электрических байках с более крупными безредукторными двигателями, то производители таких велосипедов будут обязательно использовать столь эффективную разработку в своих моделях. В то же время компании, выпускающие байки со среднеразмерными приводами и другими редукторными моторами, которые не приспособлены к регенеративному торможению, относят технологию в разряд неэффективных и просто не ставят.

Истина заключается в том, что для небольших и персональных транспортных средств рекуперация не так эффективна, как в крупных электромобилях, однако эта функция все равно имеет множество преимуществ.

Одним из самых весомых плюсов разработки можно назвать применение в качестве еще одной замедляющей силы для небольших персональных EV. К примеру, электрический самокат Xiaomi M365 для переднего моторного колеса использует только остановку регенерацией, в то время как для заднего колеса применяется традиционный дисковый тормоз. Это означает, что самокат имеет два независимых элемента замедления хода с одним рычагом управления для их активации, что снижает стоимость, вес и сложность сборки.

Рекуперация также позволяет внести механизм остановки в скейтборды - подвиг, который ранее выполнялся через трение подошвы вашей обуви о тротуар. Данная функция является очень полезной для безопасности в связи с появлением популярных моделей, достигающих скоростей более 30 км/ч.

Еще одним преимуществом регенеративного торможения является продление срока службы обычным тормозным деталям, таким как кабели и тормозные колодки. Постоянное обслуживание и замена данных частей раздражает, а если учесть, что электрические велосипеды и самокаты путешествуют намного дальше и быстрее, чем их не электрические братья, то детали изнашиваются намного раньше.

Наука имеет различные коэффициенты по преобразованию кинетической энергии в тепловую. Однако, до настоящего времени не расшифрована физическая суть такого преобразования.

Это преобразование связано с трением. Трение процесс взаимодействия тел при их относительном движении (смещении). Трение всегда сопровождается выделением тепла и износом трущихся поверхностей.

Выделение тепла связано также с ударами минимум двух тел (в частности, при лёгком постукивании молотком по металлу, удар пушечного ядра в корпус корабля и др.).

Преобразование кинетической энергии в тепловую - это частный случай волнового взаимодействия замкнутых контуров (атомов, доменов) имеющих пульсационные электронные оболочки.

В любой среде распространение волн всегда сопровождается потерями - диссипацией энергии . Все волны обладают энергией и у всех физических волн происходит диссипация энергии.

Наукой принято, что кинетическая энергия любой движущейся частицы представляет собой волну Луи де Бройля. Де Бройлем был выведен принцип универсальности корпускулярно-волнового дуализма относительно всех видов элементарных частиц (атомов, электронов, и т.д.). Все частицы находятся в колебательном движении с длиной волны

л=h / m ? v» (л = h/p),

где m и v - масса и скорость частицы, масса составляет

m = h / л? v », p - импульс «p = h / л» ,

«р = m ? v», «р = Ft (действия силы) ».

Позднее, наукой выведена формула диссипации кинетической энергии за один период колебания волны де Бройля.

Диссипация -

«Wd = H0hс/v»

(считается формулой «вязкости физического вакуума»), где H 0 - постоянная Хаббла (2.40 ± 0.12)·10 -18 Гц, «h» - постоянная Планка, «с» - скорость света, «v» - скорость частицы. Формула подходит для всех тел и частиц.

Из формулы видно, что диссипация кинетической энергии прямо пропорциональна массе и пройденному расстоянию, а также импульсу и времени его действия.

Вывод науки: у всех волн помимо таких свойств как длина, частота и энергия имеется еще и диссипация энергии из-за того, что при каждом колебании волны происходит перекачка одного вида энергии в другой и наоборот.

Какие выводы можно сделать из данного утверждения?

Формула и трактовка диссипации говорит о том, что кинетическая энергия с каждым колебанием снижается, по умолчанию, до полного угасания волн и перехода в тепловую энергию. Это выражается в аспекте «однонаправленности» и «необратимости» эволюционного процесса в Мироздании - фундаментального положения современной науки - Второго начала термодинамики. В результате этого необратимого процесса космические формации обязательно «сваливаются» в термодинамическое равновесие - «тепловую смерть» с максимумом энтропии и хаоса (максимальной степени неупорядоченности теплового движения, т.е. в конечной стадии на уровень элементарных частиц - прим. А.П.). Для науки круговорот материи в Мироздании закончился, т.к. какого-либо реального механизма формирования сингулярной точки и последующего её «Большого Взрыва» в Природе не существует. Имеется единственный выход из данной абсурдной ситуации - признать существование Первичной космической субстанции - элементарных частиц и три стадии их структурирования - монного, три-А-дного и дихотомического.

Размыкание эволюционного процесса в науке является результатом отсутствия в Парадигме двух факторов - гексагональных тороидальных «этажей» - слоёв в частотно-спектральной структуре Мироздания, а также механизма космической пульсации.

В результате в науке (термодинамике) до настоящего времени нет механизма обратимости процессов во Вселенной - тороидальных структур с магнитными потоками N-SS-N (N-SS-NN-S….), т.е. процессов структурирования аннигиляции материи и Мироздания. А однажды возбуждённые волны, в отсутствие механизма космической пульсации, в результате диссипации, безвозвратно угасают.

В соответствие с внутри-Природной информационной системой, в волновых процессах импульс, возбуждающий Среду, создается пульсационным выбросом (с определённой массой, силой с определённой временной продолжительностью

р = Ft (действия силы)

Колебательное же движение - волну создаёт череда периодических импульсов (периодических актов пульсации частиц ) на каждой несущей частоте, формируемой в ходе дихотомического структурирования материи и «этажей» Вселенной.

В этих условиях реальная волна выглядит как чередование сгущений (с повышенной плотностью вещества) и разрежений (с пониженной плотностью) вещества (частиц) Среды. В графическом изображении волна - это череда максимумов и минимумов амплитуды колебаний, для стоячих волн - череда узлов и пучностей.

Пульсационный выброс одного импульса имеет определённое количество выбрасываемого источником вещества и поэтому радиус выброса в трёхмерном пространстве ограничен. Пульсационный выброс формирует спектр излучения. Каждый последующий импульс также формирует спектр, который накладывается на предыдущий. При наложении спектров выбрасываемое вещество взаимодействует и формирует устойчивое частотно-спектральное распределение материи с максимумами лучевой энергии на «синем» конце и тепловой энергии на «красном» конце спектра. Диссипации, как таковой, с каждым колебанием волны не происходит. Тепловые потери при взаимодействии налагающихся друг на друга спектров компенсируются пульсационными выбросами. Диссипация, в данном случае, это отражение снижения лучевой энергии от источника пульсации к «красному» концу спектра (при одновременном росте тепловой энергии на «красном» конце).

Залогом существования реального Мира является способность октаедрических корпускул материи (результата дихотомического структурирования) поглощать более мелкие космические формации (корпускулы), т.е. восстанавливать свою потерянную энергию и пульсировать (выбрасывать поглощаемые частицы) наружу (процессы поглощения и излучении телами известны ещё со времён Кирхгоффа (1859 г.). Часть выброшенных частиц составляет электрическую оболочку корпускулы, часть более энергичных («тепловых», как говорилось выше, более «скоростных» и быстрых) наполняет окружающую Среду. Эти «скоростные» тепловые частицы также являются предметом последующего поглощения и пульсации корпускул. Баланс сохраняется, Закон сохранения энергии обеспечивается.

Таким образом, в реальности, можно выделить два вида диссипации.

Во-первых, диссипация (лучевой) энергии, как отражение угасания (ослабление) импульса в пульсационном цикле.

Во-вторых, диссипация - потеря кинетической энергии с переходом в тепло в ходе передачи импульса от одних колеблющихся частиц Среды (замкнутых контуров, тел, ионов кристаллической решётки, свободных электронов) к другим. Этот вид соответствует определению диссипации науки (при условии дополнительного учёта пульсационных процессов).

Механизм перехода кинетической энергии в тепловую представляется следующим образом.

Трение взаимодействующих тел - результат всеобщей «вязкости физических сред» (в.т.ч. «физического вакуума»). Отсюда - физическая суть диссипации - перехода кинетической энергии в тепло - это взаимодействие электрических (пульсационных) оболочек корпускул. На атомно-молекулярном уровне это взаимодействие электронных оболочек, в большей степени её наружных («валентных») электронных слоёв.

При контакте и перемещении относительно друг друга (трении) «валентные» слои спектра пульсации (с частотными фракталами 3,4-3,1 Гц деформируются, частично разрушаются с выделением «скоростных» частиц (т.н. быстрых электронов) в окружающую Среду. Происходит феномен выделения тепла. Тенденция перехода частотного фрактала (солитона) от 3,1 в сторону к 3,0 Гц приводит к дополнительному нагреву (частичному эффекту «самопроизвольного» нагревания).

Ударное взаимодействие существует в двух видах - внешнего и внутреннего ударов.

В случае внешнего ударного взаимодействия происходит деформация более глубоких (по сравнению с трением) электронных слоёв, с выбросом значительно большего количества «быстрых» частиц. Происходит мощное разогревание до свечения и даже плавления ударяющихся поверхностей.

Количество тепловой энергии пропорционально кинетической энергии (скорости и массе) ударного тела, т.е. достаточной амплитуде и длине пробега, а также импульсу (характеризующегося силой и продолжительностью удара).

Внутренний удар характерен для взаимодействия внутри корпускулы, в частности, ударов структурных элементов триплета о свою энергетическую оболочку, а также взаимных ударов элементов самого триплета.

Откуда в этом случае возникают «скоростные» мелкие частицы, определяющие проявление тепловой энергии? Суть феномена в том, что элементы триплета и контур корпускулы на атомно-молекулярном уровне являются сложными частицами в составе множества суб- суб- суб-…частиц на различных уровнях несущих частот. В результате, внутренних ударов также выбивается в Среду множество скоростных тепловых частиц.

Тепловой эффект возможен также за счёт высокочастотного облучения (например, - излучением или «биологическим - N» через резонанс) повышающего рост частотного фрактала «синего» конца спектра (в частности, до 7,7 Гц и выше).

В технике, при сварке и резке материалов, эффект внешнего удара (и облучения) используется путём одновременного точечного облучения разными по мощности лучами.

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Довольно широкое распространение получают ветряные электростанции. Они довольно удобны в использовании на равнинных территориях с частыми и сильными ветрами. Его устройство не очень сложно и многие владельцы частных домов задумываются об установке ветряков или солнечных батарей.

Итак, ветрогенератор или ветряная электростанция или ветроэлектрическая установка – это устройство для преобразования ветровой кинетической энергии в электрическую. Примитивное устройство такого ветрогенератора показано на рисунке ниже:

Ветрогенераторы можно разделить на промышленные и домашние. Промышленные ветроустановки, как правило, устанавливаются энергетическими корпорациями или государствами и объединяются в сети, в результате получаются электростанции использующие энергию ветра для выработки электрической энергии. Большое преимущество таких электростанций в том, что для выработки электричества им не нужно сырья (уголь, нефть, газ), а также они не генерируют отходов в процессе работы. Но есть и требования для них – высокий среднегодовой уровень ветра, иначе их применение будет экономически не целесообразным. Мощности современных ветрогенераторов могут достигать 6 МВт.

Сейчас за умеренные деньги можно купить ветрогенератор для загородного дома и тем самым обеспечить электроэнергией свой загородный дом. Обычно для обеспечения небольшого дома вполне хватает ветроустановки мощность 1 кВт, но при скорости ветра 8 м/с.

Если средне годовая скорость ветра не достаточна для полного обеспечения дома, ветроустановку можно дополнить солнечными элементами или дизель – генераторной установкой. При этом ветрогенераторы с вертикальными осями могут дополнятся меньшими ветрогенераторами. Как, пример – турбина Дарье вполне успешно может дополнятся ротором Савониуса и при этом они не мешают друг другу, а прекрасно дополняют друг друга.

Ветроэлектростанции в домашнем хозяйстве

Как правило, в домашних хозяйствах ветряки рассматриваются с точки зрения существенной экономии при отоплении, обслуживания теплиц (освещение), а также для снижения потребления электроэнергии из сети, а иногда даже ее генерация в обратно сеть. Большое непостоянство ветра не дает возможности спрогнозировать приблизительное количество электроэнергии, которую может произвести данная установка. Поэтому к постройке ветрогенератора добавляется еще вопрос стабилизации вырабатываемой им энергии.

Главным тормозом массового внедрения ветрогенераторов является довольно высокая стоимость киловатта мощности. Также расходы на их эксплуатацию тоже не маленькие.

Одной из важнейших характеристик ветряка есть так называемый коэффициент использования энергии ветра (КИЭВ). У самых лучших ветряков этот коэффициент достигает 60 – 80%, а в среднем он составляет 40 – 45%. У любительских ветряков он, как правило, не превышает 35%.

Ниже приведена таблица, в которой приводится примерные значения зависимости мощности установки от диаметра лопастей и скорости ветра:

Расчет ветрогенератора

Для правильного выбора агрегата нужно точно определить направление преимущественное ветра, его среднюю скорость в месте, где предположительно будет установлен ветряк. Нужно помнить, что скорость начальная вращения лопастей примерно 2 м/с, а максимальный эффект будет достигнут при скорости 9 – 12 м/с. Мощность ветроустановки зависит только от диаметра винта и скорости ветра.

Внизу приведены простейшие формулы для расчета мощности ветроустановки:

Где: Р – мощность, выраженная кВт;

D – диаметр винта, выраженный в метрах;

V – скорость ветра, м/с;

Где: Р – мощность, выраженная Вт;

S – площадь, на которую перпендикулярно дует ветер, выраженная в м 2 ;

V – скорость ветра, м/с;

Как видно из формул выше, на мощность ветроустановки мы можем повлиять диаметром винта, так как не можем повлиять на скорость ветра. Посчитав примерную мощность, полученную от установки ветряка, можно прикинуть, а стоит ли устанавливать ветряк? Если установка ветряка не целесообразна можно выбрать другой альтернативный источник энергии (солнечные батареи) или установить несколько ветряков.