Бинарные отношения. Примеры бинарных отношений. Бинарные отношения — MT1102: Линейная алгебра (введение в математику) — Бизнес-информатика

01.08.2019

Лекция 3.

п.3. Отношения на множествах. Свойства бинарных отношений.

3.1. Бинарные отношения .

Когда говорят о родстве двух людей, например, Сергей и Анна, то подразумевают, что есть некая семья, к членам которой они относятся. Упорядоченная пара (Сергей, Анна) отличается от других упорядоченных пар людей тем, что между Сергеем и Анной есть некое родство (кузина, отец и т. д.).

В математике среди всех упорядоченных пар прямого произведения двух множеств A и B (A ´B ) тоже выделяются «особые» пары в связи с тем, что между их компонентами есть некоторые «родственные» отношения, которых нет у других. В качестве примера рассмотрим множество S студентов какого-нибудь университета и множество K читаемых там курсов. В прямом произведении S ´K можно выделить большое подмножество упорядоченных пар (s , k ), обладающих свойством: студент s слушает курс k . Построенное подмножество отражает отношение «… слушает …», естественно возникающее между множествами студентов и курсов.

Для строгого математического описания любых связей между элементами двух множеств введем понятие бинарного отношения.

Определение 3.1. Бинарным (или двухместным ) отношением r между множествами A и B называется произвольное подмножество A ´B , т. е.

В частности, если A= B (то есть rÍA 2), то говорят, что r есть отношение на множестве A.

Элементы a и b называются компонентами (или координатами ) отношения r.

Замечание. Договоримся, что для обозначения отношений между элементами множеств использовать греческий алфавит : r, t, j, s, w и т. д.

Определение 3.2. Областью определения D r={a | $ b , что a rb } (левая часть). Областью значений бинарного отношения r называется множество R r={b | $ a , что a rb } (правая часть).

Пример 3. 1. Пусть даны два множества A ={1; 3; 5; 7} и B ={2; 4; 6}. Отношение зададим следующим образом t={(x ; y A ´B | x+ y =9}. Это отношение будет состоять из следующих пар (3; 6), (5; 4) и (7; 2), которые можно записать в виде t={(3; 6), (5; 4), (7;2)}. В данном примере D t={3; 5; 7} и R t= B ={2; 4; 6}.

Пример 3. 2. Отношение равенства на множестве действительных чисел есть множество r={(x ; y ) | x и y – действительные числа и x равно y }. Для этого отношения существует специальное обозначение «=». Область определения совпадает с областью значений и является множеством действительных чисел, D r= R r.

Пример 3. 3. Пусть A – множество товаров в магазине, а B – множество действительных чисел. Тогда j={(x ; y A ´B | y – цена x } – отношение множеств A и B .

Если обратить внимание на пример 3.1., то можно заметить, что данное отношение было задано сначала в виде t={(x ; y A ´B | x+ y =9}, а потом записано в виде t={(3; 6), (5;4), (7;2)}. Это говорит о том, что отношения на множествах (или одном множестве) можно задавать различными способами. Рассмотрим способы задания бинарных отношений.

Способы задания отношений:

1) с помощью подходящего предиката;

2) множество упорядоченных пар;

3) в графической форме: пусть A и B – два конечных множества и r – бинарное отношение между ними. Элементы этих множеств изображаем точками на плоскости. Для каждой упорядоченной пары отношения r рисуют стрелку, соединяющую точки, представляющие компоненты пары. Такой объект называется ориентированным графом или орграфом , точки же, изображающие элементы множеств, принято называть вершинами графа .

4) в виде матрицы: пусть A ={a 1, a 2, …, an } и B ={b 1, b 2, …, bm }, r – отношение на A ´B . Матричным представлением r называется матрица M =[mij ] размера n ´m , определенная соотношениями

.

Кстати, матричное представление является представлением отношения в компьютере.

Пример 3. 4. Пусть даны два множества A ={1; 3; 5; 7}и B ={2; 4; 6}. Отношение задано следующим образом t={(x ; y ) | x+ y =9}. Задать данное отношение как множество упорядоченных пар, орграфом, в виде матрицы.

Решение. 1) t={(3; 6), (5; 4), (7; 2)} - есть задание отношения как множества упорядоченных пар;

2) соответствующий ориентированный граф показан на рисунке.

https://pandia.ru/text/78/250/images/image004_92.gif" width="125" height="117">. ,

Пример 3. 5 . Еще в качестве примера можно рассмотреть предложенную Дж. фон Нейманом (1903 – 1957) блок-схему ЭВМ последовательного действия, которая состоит из множества устройств M :

,

где a – устройство ввода, b – арифметическое устройство (процессор), c – устройство управления, d – запоминающее устройство, e – устройство вывода.

Рассмотрим информационный обмен между устройствами mi и mj , которые находятся в отношении r, если из устройства mi поступает информация в устройство mj .

Это бинарное отношение можно задать перечислением всех его 14 упорядоченных пар элементов:

Соответствующий орграф, задающий это бинарное отношение, представлен на рисунке:


Матричное представление этого бинарного отношения имеет вид:

. ,

Для бинарных отношений обычным образом определены теоретико-множественные операции: объединение, пересечение и т. д.

Введем обобщенное понятие отношения.

Определение 3.3. n-местное (n -арное ) отношение r – это подмножество прямого произведения n множеств, то есть множество упорядоченных наборов (кортежей )

A 1´…´An ={(a 1, …, an )| a A 1Ù … Ùan ÎAn }

Многоместные отношения удобно задавать с помощью реляционных таблиц . Такое задание соответствует перечислению множества n -к отношения r. Реляционные таблицы широко используются в компьютерной практике в реляционных базах данных . Заметим, что реляционные таблицы нашли применение в повседневной практике. Всевозможные производственные, финансовые, научные и другие отчеты часто имеют форму реляционных таблиц.

Слово «реляционная » происходит от латинского слова relation , которое в переводе на русский язык означает «отношение». Поэтому в литературе для обозначения отношения используют букву R (латинскую) или r (греческую).

Определение 3.4. Пусть rÍA ´B есть отношение на A ´B. Тогда отношение r-1 называется обратным отношением к данному отношению r на A ´B , которое определяется следующим образом:

r-1={(b , a ) | (a , b )Îr}.

Определение 3.5. Пусть r ÍA ´B есть отношение на A ´B, а s ÍB ´C – отношение на B ´C. Композицией отношений s и r называется отношение t ÍA ´C ,которое определяется следующим образом:

t=s◦r= {(a , c )| $ b Î B, что (a , b )Îr и (b , c )Îs}.

Пример 3. 6 . Пусть , и C ={, !, d, à}. И пусть отношение r на A ´B и отношение s на B ´C заданы в виде:

r={(1, x ), (1, y ), (3, x )};

s={(x ,), (x , !), (y , d), (y , à)}.

Найти r-1 и s◦r, r◦s.

Решение. 1) По определению r-1={(x , 1), (y , 1), (x , 3)};

2) Используя определение композиции двух отношений, получаем

s◦r={(1,), (1, !), (1, d), (1, à), (3,), (3, !)},

поскольку из (1, x )Îr и (x ,)Îs следует (1,)Îs◦r;

из (1, x )Îr и (x , !)Îs следует (1, !)Îs◦r;

из (1, y )Îr и (y , d)Îs следует (1, d)Îs◦r;

из (3, x )Îr и (x , !)Îs следует (3, !)Îs◦r.

Теорема 3.1. Для любых бинарных отношений выполняются следующие свойства:

2) ;

3) - ассоциативность композиции.

Доказательство. Свойство 1 очевидно.

Докажем свойство 2. Для доказательства второго свойства покажем, что множества, записанные в левой и правой частях равенства, состоят из одних и тех же элементов. Пусть (a ; b ) Î (s◦r)-1 Û (b ; a ) Î s◦r Û $ c такое, что (b ; c ) Î r и (c ; a ) Î s Û $ c такое, что (c ; b ) Î r-1 и (a ; c ) Î s-1 Û (a ; b ) Î r -1◦s -1.

Свойство 3 доказать самостоятельно.

3.2. Свойства бинарных отношений .

Рассмотрим специальные свойства бинарных отношений на множестве A .

Свойства бинарных отношений.

1. Отношение r на A ´A называется рефлексивным , если (a ,a ) принадлежит r для всех a из A .

2. Отношение r называется антирефлексивным , если из (a ,b )Îr следует a ¹b .

3. Отношение r симметрично , если для a и b , принадлежащих A , из (a ,b )Îr следует, что (b ,a )Îr.

4. Отношение r называется антисимметричным , если для a и b из A , из принадлежности (a ,b ) и (b ,a ) отношению r следует, что a =b .

5. Отношение r транзитивно , если для a , b и c из A из того, что (a ,b )Îr и (b ,c )Îr, следует, что (a ,c )Îr.

Пример 3. 7. Пусть A ={1; 2; 3; 4; 5; 6}. На этом множестве задано отношение rÍA 2, которое имеет вид: r={(1, 1), (2, 2), (3, 3), (4; 4), (5; 5), (6; 6), (1; 2), (1; 4), (2; 1), (2;4), (3;5), (5; 3), (4; 1), (4; 2)}. Какими свойствами обладает данное отношение?

Решение. 1) Это отношение рефлексивно, так как для каждого a ÎA , (a ; a )Îr.

2) Отношение не является антирефлексивным, так как не выполняется условие этого свойства. Например, (2, 2)Îr, но отсюда не следует, что 2¹2.

3) Рассмотрим все возможные случаи, показав, что отношение r является симметричным:

(a , b )Îr

(b , a )

(b , a )Îr?

4) Данное отношение не является антисимметричным, поскольку (1, 2)Îr и (2,1)Îr, но отсюда не следует, что 1=2.

5) Можно показать, что отношение r транзитивно, используя метод прямого перебора.

(a , b )Îr

(b , c )Îr

(a , c )

(a , c )Îr?

Как по матрице представления

определить свойства бинарного отношения

1. Рефлексивность: на главной диагонали стоят все единицы, звездочками обозначены нули или единицы.

.

2. Антирефлексивность: на главной диагонали все нули.

3. Симметричность: если .

4. Антисимметричность: все элементы вне главной диагонали равны нулю; на главной диагонали тоже могут быть нули.

.

Операция «*» выполняется по следующему правилу: , где , .

5. Транзитивность: если . Операция «◦» выполняется по обычному правилу умножения, при этом надо учитывать: .

3.3 Отношение эквивалентности. Отношение частичного порядка.

Отношение эквивалентности является формализацией такой ситуации, когда говорят о сходстве (одинаковости) двух элементов множества.

Определение 3.6. Отношение r на A есть отношение эквивалентности , если оно рефлексивно, симметрично и транзитивно. Отношение эквивалентности a rb часто обозначается: a ~ b .

Пример 3. 8 . Отношение равенства на множестве целых чисел есть отношение эквивалентности.

Пример 3. 9 . Отношение «одного роста» есть отношение эквивалентности на множестве людей X .

Пример 3. 1 0 . Пусть ¢ - множество целых чисел. Назовем два числа x и y из ¢ сравнимыми по модулю m (m Î¥) и запишем , если равны остатки этих чисел от деления их на m , т. е. разность (x -y ) делится на m .

Отношение «сравнимых по модулю m целых чисел» есть отношение эквивалентности на множестве целых числе ¢. В самом деле:

это отношение рефлексивно, т. к. для "x ΢ имеем x -x =0, и, следовательно, оно делится на m ;

это отношение симметрично, т. к. если (x -y ) делится на m , то и (y -x ) тоже делится на m ;

это отношение транзитивно, т. к. если (x -y ) делится на m , то для некоторого целого t 1 имеем https://pandia.ru/text/78/250/images/image025_23.gif" width="73" height="24 src=">, отсюда , т. е. (x -z ) делится на m .

Определение 3.7. Отношение r на A есть отношение частичного порядка , если оно рефлексивно, антисимметрично и транзитивно и обозначается символом °.

Частичный порядок важен в тех ситуациях, когда мы хотим как-то охарактеризовать старшинство. Иными словами, решить при каких условиях считать, что один элемент множества превосходит другой.

Пример 3. 11 . Отношение x £y на множестве действительных чисел есть отношение частичного порядка. ,

Пример 3. 1 2 . Во множестве подмножеств некоторого универсального множества U отношение A ÍB есть отношение частичного порядка.

Пример 3. 1 3 . Схема организации подчинения в учреждении есть отношение частичного порядка на множестве должностей.

Прообразом отношения частичного порядка является интуитивное понятие отношения предпочтения (предшествования). Отношение предпочтения выделяет класс задач, которые можно объединить, как задача о проблеме выбора наилучшего объекта .

Формулировка задачи: пусть имеется совокупность объектов A и требуется сравнить их по предпочтительности, т. е. задать отношение предпочтения на множестве A и определить наилучшие объекты.

Отношение предпочтения P , которое можно определить как «aPb , a , b ÎA Û объект a не менее предпочтителен, чем объект b » является по смыслу рефлексивным и антисимметричным (каждый объект не хуже самого себя, и, если объект a не хуже b и b не хуже a , то они одинаковы по предпочтительности). Естественно считать, что отношение P транзитивно (хотя в случае, когда, например, предпочтения обсуждаются группой лиц с противоположными интересами, это свойство может быть нарушено), т. е. P – отношение частичного порядка.

Один из возможных способов решения задачи сравнения объектов по предпочтительности – ранжирование , т. е. упорядочение объектов в соответствии с убыванием их предпочтительности или равноценности. В результате ранжирования мы выделяем «наилучшие» или «наихудшие» с точки зрения отношения предпочтения объекты.

Области применения задачи о проблеме выбора наилучшего объекта: теория принятия решений, прикладная математика, техника, экономика, социология, психология.

Определения

  • 1. Бинарным отношением между элементами множеств А и В называется любое подмножество декартова произведения RAB, RAА.
  • 2. Если А=В, то R - это бинарное отношение на A.
  • 3. Обозначение: (x, y)R xRy.
  • 4. Область определения бинарного отношения R - это множество R = {x: существует y такое, что (x, y)R}.
  • 5. Область значений бинарного отношения R - это множество R = {y: существует x такое, что (x, y)R}.
  • 6. Дополнение бинарного отношения R между элементами А и В - это множество R = (AB) R.
  • 7. Обратное отношение для бинарного отношения R - это множество R1 = {(y, x) : (x, y)R}.
  • 8. Произведение отношений R1AB и R2BC - это отношение R1 R2 = {(x, y) : существует zB такое, что (x, z)R1 и (z, y)R2}.
  • 9. Отношение f называется функцией из А в В, если выполняется два условия:
    • а) f = А, f В
    • б) для всех x, y1, y2 из того, что (x, y1)f и (x, y2)f следует y1=y2.
  • 10. Отношение f называется функцией из А на В, если в первом пункте будет выполняться f = А, f = В.
  • 11. Обозначение: (x, y)f y = f(x).
  • 12. Тождественная функция iA: AA определяется так: iA(x) = x.
  • 13. Функция f называется 1-1-функцией, если для любых x1, x2, y из того, что y = f(x1) и y = f(x2) следует x1=x2.
  • 14. Функция f: AB осуществляет взаимно однозначное соответствие между А и В, если f = А, f = В и f является 1-1-функцией.
  • 15. Свойства бинарного отношения R на множестве А:
    • - рефлексивность: (x, x)R для всех xA.
    • - иррефлексивность: (x, x)R для всех xA.
    • - симметричность: (x, y)R (y, x)R.
    • - антисимметричность: (x, y)R и (y, x)R x=y.
    • - транзитивность: (x, y)R и (y, z)R (x, z)R.
    • - дихотомия: либо (x, y)R, либо (y, x)R для всех xA и yA.
  • 16. Множества А1, A2, ..., Аr из Р(А) образуют разбиение множества А, если
  • - Аi , i = 1, ..., r,
  • - A = A1A2...Ar,
  • - AiAj = , i j.

Подмножества Аi , i = 1, ..., r, называются блоками разбиения.

  • 17. Эквивалентность на множестве А - это рефлексивное, транзитивное и симметричное отношение на А.
  • 18. Класс эквивалентности элемента x по эквивалентности R - это множество [x]R={y: (x, y)R}.
  • 19. Фактор множество A по R - это множество классов эквивалентности элементов множества А. Обозначение: A/R.
  • 20. Классы эквивалентности (элементы фактор множества А/R) образуют разбиение множества А. Обратно. Любому разбиению множества А соответствует отношение эквивалентности R, классы эквивалентности которого совпадают с блоками указанного разбиения. По-другому. Каждый элемент множества А попадает в некоторый класс эквивалентности из A/R. Классы эквивалентности либо не пересекаются, либо совпадают.
  • 21. Предпорядок на множестве A - это рефлексивное и транзитивное отношение на А.
  • 22. Частичный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А.
  • 23. Линейный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А, удовлетворяющее свойству дихотомии.

Пусть A={1, 2, 3}, B={a, b}. Выпишем декартово произведение: AB = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }. Возьмём любое подмножество этого декартова произведения: R = { (1, a), (1, b), (2, b) }. Тогда R - это бинарное отношение на множествах A и B.

Будет ли это отношение являться функцией? Проверим выполнение двух условий 9a) и 9б). Область определения отношения R - это множество R = {1, 2} {1, 2, 3}, то есть первое условие не выполняется, поэтому в R нужно добавить одну из пар: (3, a) или (3, b). Если добавить обе пары, то не будет выполняться второе условие, так как ab. По этой же причине из R нужно выбросить одну из пар: (1, a) или (1, b). Таким образом, отношение R = { (1, a), (2, b), (3, b) } является функцией. Заметим, что R не является 1-1 функцией.

На заданных множествах A и В функциями также будут являться следующие отношения: { (1, a), (2, a), (3, a) }, { (1, a), (2, a), (3, b) }, { (1, b), (2, b), (3, b) } и т.д.

Пусть A={1, 2, 3}. Примером отношения на множестве A является R = { (1, 1), (2, 1), (2, 3) }. Примером функции на множестве A является f = { (1, 1), (2, 1), (3, 3) }.

Примеры решения задач

1. Найти R, R, R1, RR, RR1, R1R для R = {(x, y) | x, y D и x+y0}.

Если (x, y)R, то x и y пробегают все действительные числа. Поэтому R = R = D.

Если (x, y)R, то x+y0, значит y+x0 и (y, x)R. Поэтому R1=R.

Для любых xD, yD возьмём z=-|max(x, y)|-1, тогда x+z0 и z+y0, т.е. (x, z)R и (z, y)R. Поэтому RR = RR1 = R1R = D2.

2. Для каких бинарных отношений R справедливо R1= R?

Пусть RAB. Возможны два случая:

  • (1) AB. Возьмём xAB. Тогда (x, x)R (x, x)R1 (x, x)R (x, x)(AB) R (x, x)R. Противоречие.
  • (2) AB=. Так как R1BA, а RAB, то R1= R= . Из R1 = следует, что R = . Из R = следует, что R=AB. Противоречие.

Поэтому если A и B, то таких отношений R не существует.

3. На множестве D действительных чисел определим отношение R следующим образом: (x, y)R (x-y) - рациональное число. Доказать, что R есть эквивалентность.

Рефлексивность:

Для любого xD x-x=0 - рациональное число. Потому (x, x)R.

Симметричность:

Если (x, y)R, то x-y = . Тогда y-x=-(x-y)=- - рациональное число. Поэтому (y, x)R.

Транзитивность:

Если (x, y)R, (y, z)R, то x-y = и y-z =. Складывая эти два уравнения, получаем, что x-z = + - рациональное число. Поэтому (x, z)R.

Следовательно, R - это эквивалентность.

4. Разбиение плоскости D2 состоит из блоков, изображённых на рисунке а). Выписать отношение эквивалентности R, соответствующее этому разбиению, и классы эквивалентности.

Аналогичная задача для b) и c).


а) две точки эквивалентны, если лежат на прямой вида y=2x+b, где b - любое действительное число.

b) две точки (x1,y1) и (x2,y2) эквивалентны, если (целая часть x1 равна целой части x2) и (целая часть y1 равна целой части y2).

с) решить самостоятельно.

Задачи для самостоятельного решения

  • 1. Доказать, что если f есть функция из A в B и g есть функция из B в C, то fg есть функция из A в C.
  • 2. Пусть A и B - конечные множества, состоящие из m и n элементов соответственно.

Сколько существует бинарных отношений между элементами множеств A и B?

Сколько имеется функций из A в B?

Сколько имеется 1-1 функций из A в B?

При каких m и n существует взаимно-однозначное соответствие между A и B?

3. Доказать, что f удовлетворяет условию f(AB)=f(A)f(B) для любых A и B тогда и только тогда, когда f есть 1-1 функция.

Систематизация свойств.

Каждое бинарное (двухместное) отношение характеризуется свойствами рефлексивности, симметричности и транзитивности. Полное или частичное отсутствие этих свойств в отношении отражается в их наименовании приставками соответственно "анти " и "не ". Определённым сочетаниям этих базовых свойств даны свои специальные наименования; например, антисимметричное и антирефлексивное отношение называется асимметричным.

Свойство рефлексивности рассматривается для одного элемента множества.

Отношение называется рефлексивным , если для любого предмета из области его определения имеет место это отношение предмета к самому себе. Отношение ровесник, определенное на области пар людей, рефлексивно, потому что любой человек ровесник самого себя.

Если отношение имеет место не для любой такой пары, то оно называется не рефлексивным . Нерефлексивно отношение любит , определенное на области пар людей, так как не все люди любят себя.

Если отношение не имеет места ни для одной такой пары, то отношение называется анти рефлексивным . Отношение больше, определённое на области пар материальных предметов, антирефлексивно, поскольку ни один предмет не больше самого себя.

Свойство симметричности рассматривается для двух разных элементов множества.

Отношение называется симметричным , когда для любых пар предметов из области его определения верно, что, когда это отношение x и y , то оно имеет место и в паре (y,x) . Отношение ровесник симметрично, так как для любых двух людей верно, что, если первый ровесник второго, то и второй ровесник первого.

Отношение называется не симметричным , если оно верно не для любых двух предметов из области определения. Несимметрично отношение любит , поскольку не для любых двух людей верно, что если первый любит второго, то второй любит первого.

Отношение называется анти симметричным , если в области определения отношения не существует пар указанного вида, для которых это верно. Отношение больше антисимметрично, потому что ни для каких предметов не может быть так, что первый предмет больше второго, а второй больше первого.

Свойство транзитивности рассматривается для трёх разных элементов множества.

Отношение называется транзитивным , если оно обязательно имеет место для пары  (x,z) при условии его наличия в парах (x,y) и (y,z) . Отношение ровесник транзитивно, так как для любых трёх людей, если один человек ровесник другого, а тот ровесник третьего, первый непременно является ровесником третьего.

Отношение называется не транзитивным , если это верно не для любыхпредметов из области определения отношения. Нетранзитивно отношение любит , потому что неверно, что оно имеет место в паре (x,z) всегда, когда оно наличествует в парах (x,y) и (y,z), т. е. не обязательно, чтобы первый человек любил третьего, когда первый любит второго, а второй любит третьего.

Отношение называется ан титранзитивным , если в области определения отношения не существует таких предметов, для которых это было бы верно. Антитранзитивно отношение отец , потому что не найдется таких трёх пар указанного вида, чтобы это отношение имело место во всех трёх. Никогда не может быть так, что первый человек - отец второго, второй - отец третьего, и при этом первый - отец третьего.

Определения.

  • Определение . Отношение ρ называется рефлексивным , если каждый элемент x∈A находится в этом отношении сам с собой: xρx для всех x∈A . На языке кванторов: ∀ x∈A: xρx
  • Определение. Отношение ρ называется симметричным , если из того, что xρy следует, что yρx: ∀x,y∈A: xρy⟹ yρx
  • Определение. Отношение ρ называется транзитивным , если из того, что xρy и yρz , следует, что xρz : ∀x,y,z∈A: (xρy ∧ yρz) ⟹ xρz
    • не рефлексивным , если: ¬∀ x∈A: xρx
    • не симметричным , если: ¬∀x,y∈A: xρy⟹ yρx
    • не транзитивным , если: ¬∀x,y∈A: (xρy∧ yρz)⟹ xρz
      • анти рефлексивным (иррефлексивным), если: ∀x∈A: ¬(xρx)
      • анти симметричным , если: ∀x,y∈A : (xρy⟹ yρx) ⟹ x=y
      • анти транзитивным , если: ∀x,y,z∈A: (xρy∧ yρz) ⟹ ¬(xρz)
  • Определение. Бинарное отношение на некотором множестве называют эквивалентностью (отношением эквивалентности), если оно рефлексивно, симметрично и транзитивно.

Рассмотрим отношение «уважать», определенное на множестве всех людей %%M%%. Для полной информации о том, кто кого уважает, составим следующее множество %%R%%. Переберем все пары %%(a, b)%%, где %%a, b%% пробегают множество всех людей. Если %%a%% уважает %%b%%, то пару %%(a,b)%% отнесем к множеству %%R%%, иначе — нет.

Этот список полностью отражает отношение «уважать». Если нужно узнать, уважает ли человек %%a%% человека %%b%%, то просмотрим множество %%R%%. Если пара %%(a, b) \in R%%, то заключаем, что %%a%% уважает %%b%%. В случае %%(a,b) \notin R%% — %%a%% не уважает %%b%%.

Определение

Бинарным отношением , определенным на множестве %%M%%, называется произвольное подмножество %%R%% из декартового произведения %%M^2%%.

Пример

Рассмотрим отношение больше на множестве %%M = \{1, 2\}%%. Тогда

$$ M^2 = \big\{(1, 1), (1,2), (2,1), (2,2)\big\} $$ Из него выбирем все пары %%(a,b)%%, где %%a > b%%. Получим $$ R = \big\{(2,1)\big\} $$

Виды бинарных отношений

Рефлексивное бинарное отношение

рефлексивным , если для любого элемента %%a%% из %%M%%, выполняется условие %%a~R~a%%. $$ \begin{array}{l} \forall a\in M~~a~R~a \text{ или}\\ \forall a\in M~~(a,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше больше рефлексивным? Если да, то каждое число является больше самого себя, что неверно. Поэтому отношение больше не рефлексивно.
  2. Рассмотрим отношение равно на множестве действительных чисел. Оно является рефлексивным , так как каждое действительное число равно самому себе.

Симметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется симметричным , если для любых двух элементов %%a, b%% из %%M%%, из условия %%a~R~b%% следует условие %%b~R~a%%.

$$ \begin{array}{l} \forall a,b\in M~~a~R~b \rightarrow b~R~a \text{ или}\\ \forall a,b\in M~~(a,b) \in R \rightarrow (b,a) \in R. \end{array} $$

Примеры

  1. Рассмотрим отношение больше на множестве действительных чисел. Является ли отношение больше симметричным? Оно не является симметричным, так как если %%a > b%%, то условие %%b > a%% не выполняется. Поэтому отношение больше не симметрично.
  2. Пусть %%R%% — отношение, определенное на множестве %%M = \{a,b,c\}%%. При этом %%R = \big\{ (a,b), (b,c), (a,a), (b,a), (c,b)\big\}%%. Для этого отношения имеем %%\forall x,y \in M ~~ (x,y) \in R \rightarrow (y,x) \in R%%. По определению %%R%% симметрично.

Транзитивное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется транзитивным , если для любых элементов %%a, b, c%% из %%M%%, из условий %%a~R~b%% и %%b~R~c%% следует условие %%a~R~c%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~c \rightarrow a~R~c \text{ или}\\ \forall a,b,c\in M~~(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R. \end{array} $$

Пример

Рассмотрим отношение больше на множестве дейтсвительных чисел. Оно является транзитивным , так как для любых элементов выполняется условние %%\forall a,b,c\in M~~a > b \land b > c \rightarrow a > c%%. Так, например, подставив вместо %%a, b%% и %%c%% числа %%2, 1%% и %%0%% соответственно, получим: если %%2 > 1%% и %%1 > 0%%, то %%2 > 0%% — верное утверждение (вспомните импликацию, из истины следует истина).

Антисимметричное бинарное отношение

Бинарное отношение %%R%% на множестве %%M%% называется антисимметричным , если для любых элементов %%a, b%% из %%M%%, из условий %%a~R~b%% и %%b~R~a%% следует условие %%a = b%%.

$$ \begin{array}{l} \forall a,b,c\in M~~a~R~b \land b~R~a \rightarrow a = b \text{ или}\\ \forall a,b\in M~~(a,b) \in R \land (b,a) \in R \rightarrow a = b. \end{array} $$

Пример

Отношение больше или равно на множестве действительных чисел антисимметрично . Действительно, если %%a \geq b%% и %%b \geq a%%, %%a = b%%.

Эквивалентное бинарное отношение

эквивалентности , если оно рефлексивно , симметрично и транзитивно .

Нетрудно проверить, что отношение параллельности на множестве прямых плоскости является отношением эквивалентности.

Отношение частичного порядка

Бинарное отношение %%R%% на множестве %%M%% называется отношением частичного порядка , если оно рефлексивно , антисимметрично и транзитивно .

Отношение больше или равно на множестве действительных чисел является отношением частичного порядка.

Построение отрицаний

Пусть %%R%% — бинарное отношение на множестве %%M%%, и %%P%% — одно из следующих условий:

  • отношение %%R%% рефлексивно,
  • отношение %%R%% симметрично,
  • отношение %%R%% транзитивно,
  • отношение %%R%% антисимметрично.

Построим для каждого из них отрицание выполнения условия %%P%%.

Отрицание рефлексивности

По определению %%R%% рефлексивно, если каждый элемент множества %%M%% находится в отношении %%R%% к самому себе, то есть %%\forall a \in M~~a~R~a%%. Тогда рассмотрим отрицание рефлексивности как истинное высказывание %%\overline{\forall a \in M~~a~R~a}%%. Используем равносильность %%\overline{\forall x P(x)} \equiv \exists x \overline {P(x)}%%. В нашем случае получаем %%\forall a \in M~~a~R~a \equiv \exists a\in M~~a~\not\text{R }~a%%, что и нужно.

Аналогично получаем и остальные отрицания. В итоге получаем следующие утверждения:

    %%R%% не рефлексивно тогда и только тогда, когда

    $$ \exists a \in M~~a~\not R~a $$

    %%R%% не симметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~\not R~a $$

    %%R%% не транзитивно тогда и только тогда, когда

    $$ \exists a, b, c \in M a~R~b \land b~R~c \land a~\not R~c $$

    %%R%% не антисимметрично тогда и только тогда, когда

    $$ \exists a, b \in M~~ a~R~b \land b~R~a \land a \neq b. $$

Понятие отношения на множестве

Чтобы определить общее понятие бинарного отношения на множестве, поступим так же, как и в случае с соответствиями,

т.е. рассмотрим сначала конкретный пример. Пусть на множестве X = {2, 4, 6, 8} задано отношение «меньше». Это означает, что для любых двух чисел из множества X можно сказать, какое из них меньше: 2 < 4, 2 < 6, 2 < 8, 4 < 6, 4 < 8, 6 < 8. Полученные неравенства можно записать иначе, в виде упорядоченных пар: (2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8). Но все эти пары есть элементы декартова произведения X х X, поэтому об отношении «меньше», заданном на множестве X, можно сказать, что оно является подмножеством множества X х X.

Вообще бинарные отношения на множестве X определяют следующим способом:

Определение. Бинарным отношением на множестве X называется всякое подмножество декартова произведения X х X.

Так как в дальнейшем мы будем рассматривать только бинарные отношения, то слово «бинарные», как правило, будем опускать.

Условимся отношения обозначать буквами R, S, Т, Р и др.

Если R - отношения на множестве X, то, согласно определению, R X х X. С другой стороны, если задано некоторое подмножество множества X х X, то оно определяет на множестве X некоторое отношение R.

Утверждение о том, что элементы х и у находятся в отношении R, можно записывать так: (х, у) R или x R y. Последняя запись читается: «Элемент х находится в отношении R с элементом у».

Отношения задают так же, как соответствия. Отношение можно задать, перечислив пары элементов множества X, находящиеся в этом отношении. Формы представления таких пар могут быть различными - они аналогичны формам задания соответствий. Отличия касаются задания отношений при помощи графа.

Построим, например, граф отношений «меньше», заданного на множестве Х= (2, 4, 6, 8}. Для этого элементы множества X изобразим точками (их называют вершинами графа), а отношение «меньше» - стрелкой (рис. 1).

На том же множестве X можно рассмотреть другое отношение - «кратно». Граф этого отношения будет в каждой вершине иметь петлю (стрелку, начало и конец которой совпадают), так как каждое число кратно самому себе (рис. 2).

Отношение можно задать при помощи предложения с двумя переменными. Так, например, заданы рассмотренные выше отношения «меньше» и «кратно», причем использована краткая форма предложений «число х меньше числа у» и «число х кратно числу у». Некоторые такие предложения можно записывать, используя символы. Например, отношения «меньше» и «кратно» можно было задать в таком виде: «х<у», «х у». Отношение «х больше у на 3» можно записать в виде равенства х = у + 3 (или х – у = 3).

Для отношения R, заданного на множестве X, всегда можно задать отношение R -1 , ему обратное, - оно определяется так же, как соответствие, обратное данному. Например, если R - отношение «х меньше у», то обратным ему будет отношение «у больше х».

Понятием отношения, обратного данному, часто пользуются при начальном обучении математике. Например, чтобы предупредить ошибку в выборе действия, с помощью которого решается задача: «У Пети 7 карандашей, что на 2 меньше, чем у Бори. Сколько карандашей у Бори?» - ее переформулируют: «У Пети 7 карандашей, а у Бори на 2 больше. Сколько карандашей у Бори?» Видим, что переформулировка свелась к замене отношения «меньше на 2» обратным ему отношением «больше на 2».

Свойства отношений

Мы установили, что бинарное отношение на множестве X представляет собой множество упорядоченных пар элементов, принадлежащих декартову произведению ХхХ. Это математическая сущность всякого отношения. Но, как и любые другие понятия, отношения обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые. Рассмотрим на множестве отрезков, представленных на рис. 3, отношения перпендикулярности, равенства и «длиннее». Построим графы этих отношений (рис. 4) и будем их сравнивать.

Видим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отношение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлексивности или просто, что оно рефлексивно .

Определение. Отношение R на множестве X называется рефлексивным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х <=> xRx для любого х X

Если отношение R рефлексивно на множестве X, то в каждой вершине графа данного отношения имеется петля. Справедливо и обратное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подобен самому себе).

Существуют отношения, которые свойством рефлексивности на обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе. Поэтому на графе отношения перпендикулярности (рис. 4) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярности и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направлении. Эта особенность графа отражает те свойства, которыми обладают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;

Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков говорят, что они обладают свойством симметричности или, просто симметричны.

Определение. Отношение R на множестве X называется симметричным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у, следует, что и элемент у находится в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на X <=> (xRy => yRx)

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к х. Справедливо и обратное утверждение. Граф, содержащий вместе с каждой стрелкой, идущей от х к у, и стрелку, идущую от у к х, является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных отношений присоединим еще такие:

Отношение параллельности на множестве прямых (если прямая х параллельна прямой у, то и прямая у параллельна прямой х);

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на множестве отрезков. Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметричности или просто антисимметрично.

Определение. Отношение R на множестве X называется антисимметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится .

антисимметрично на X <=> (xRy и х≠у => )

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого соединены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством антисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может быть больше х);

Отношение «больше на 2» для чисел (если х больше у на 2, то у не может быть больше на 2 числа х).

Существуют отношения, не обладающие ни свойством симметричности, ни свойством антисимметричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 5. Он показывает, что данное отношение не обладает ни свойством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отношения «длиннее» (рис. 4). На нем можно заметить: если стрелки проведены от е к а и от а к с , то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с , то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзитивным, если выполняется условие: из того, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z.

Используя символы, это определение можно записать в таком виде:

R транзитивно на X <=> (xRy и yRz => xRz)

Граф транзитивного отношения с каждой парой стрелок, идущих от х к у и у к z , содержит стрелку, идущую от х к z . Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z , то отрезок х равен отрезку z . Это свойство отражено и на графе отношения равенства (рис. 4)

Существуют отношения, которые свойством транзитивности не обладают. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку d, а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свойством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связанным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находится в отношении R с элементом у, либо элемент у находится в отношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связанно на множестве X <=> (х≠у xRy или yRx)

Например, свойством связанности обладают отношения «больше» для натуральных чисел: для любых различных чисел х и у можно утверждать, что либо х> у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обладают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа хну, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отношения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, заданном на множестве отрезков (рис. 4), то получается, что оно рефлексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности-симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве

отрезков связанными не являются.

Задача 1. Сформулировать свойства отношения R, заданного при помощи графа (рис. 6).

Решение. Отношение R- антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с , на графе есть стрелка, идущая от b к с .

Отношение R - связанно, так как любые две вершины соединены стрелкой.

Отношение R свойством рефлексивности не обладает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число у не больше числа х в 2 раза.

Данное отношение не обладает свойством рефлексивности, потому что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число х больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связанности не обладает, так как существуют пары таких чисел х и у, что ни число не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3,5 и 8 и др.