Краткий обзор основных видов альтернативной электроэнергетики. Энергия из тепла человека. Польза от сточных вод

26.06.2019

Руслан Шамуков/ТАСС, архив

В большинстве развитых стран мира реализуются программы в области альтернативной энергетики. По некоторым оценкам, в РФ все еще не выработана система развития зеленой энергетики

Одной из тем ХХ Петербургского международного экономического форума является альтернативная энергетика и перспективы ее развития. Свое видение этой проблемы представил ТАСС эксперт РАНХиГС Иван Капитонов.

Мейнстримом последнего десятилетия является экологизация энергетики во всем мире, в том числе и в России. Пессимистическая гипотеза 80-90-х гг. ХХ в. о критическом сокращении запасов углеводородного сырья и глобальном дефиците нефтепродуктов, резкий скачок цен на энергоносители в начале XXI в., общий рост техногенной и антропогенной экологической нагрузки, изменение климата отразились в изменении приоритетов развития мировой энергетики в сторону повышения важности возобновляемых источников энергии (ВИЭ), добычи альтернативных видов топлива и ускорения темпов роста энергоэффективности.

Еще в 2011 г. возобновляемая энергетика была определена экспертами Евростата как сектор, находящийся на стадии внедрения и обладающий средним уровнем конкурентоспособности. В то же время глобальный спрос на ВИЭ демонстрирует устойчивый рост. Ожидается, что к 2050 г. их удельный вес в мировом энергетическом балансе достигнет 35%, что является, пожалуй, самым оптимистичным прогнозом по ВИЭ из имеющихся.

За бортом "зеленой революции"?

Ни для кого не секрет, что в большинстве развитых стран мира разрабатываются и реализуются программы, связанные с альтернативной энергетикой. Ключевые преимущества ВИЭ – неисчерпаемость и экологичность – служат основанием для динамичного развития зеленой энергетики.

По мнению американского ученого-эколога Вудроу Кларка, с распространением возобновляемых источников энергии зеленую трансформацию энергетических рынков можно увидеть в странах ЕС, Азии и Китае. При этом если США находится на начальном этапе жизненного цикла развития ВИЭ, то Россия более активно движется вперед, в сторону зеленой промышленной переработки возобновляемых источников энергии.

В то же время другой эксперт – член форума энергетического права Анатоль Бут из Абердинского университета – отметил, что по состоянию на 2014 г. в России все еще не была выработана эффективная система стимулирования развития экологически чистой энергии.

По его мнению, это может привести к тому, что Россия окажется за бортом "зеленой революции" и значительно отстанет от развитых стран и других государств БРИК в сфере разработки экологически чистых технологий.

В актуальной на сегодняшний день Энергетической стратегии России на период до 2030 г. (ЭС-2030), принятой в 2009 г., отмечено, что на момент разработки стратегии РФ была "практически не представлена на мировом рынке энергетики, основанной на возобновляемых источниках энергии".

В то же время дальнейший прогноз развития был построен на гипотезе смягчения диспропорций, связанных с доминированием в структуре потребления топливно-энергетических ресурсов углеводородного топлива и малым удельным весом нетопливных энергоресурсов (энергия атомных электростанций, возобновляемых источников энергии).

В развитие положений ЭС-2030 и еще не утвержденной ЭС-2035 Институтом энергетической стратегии подготовлен проект Концепции Энергетической стратегии России, в которой уже взят более поздний период - 2036-2050 гг. Он обозначен как "этап инновационного развития российской энергетики с переходом к принципиально иным технологическим возможностям высокоэффективного использования традиционных энергоресурсов и неуглеводородных источников энергии".

Таким образом, сроки конца углеводородной эпохи по документам в РФ постепенно отодвигаются все дальше.

Что происходит сегодня?

По данным на начало 2016 г., совокупная установленная мощность в России по всем видам генерации составляла 225 ГВт, из них лишь 1% приходится на долю ВИЭ, в том числе 0,6% – биомасса, 0,3% – малые ГЭС, 0,1% – ветряная, солнечная электроэнергетика и геотермальные источники.

В то же время распоряжением Правительства РФ от 28 мая 2013 г. №861-р предусмотрено, что доля зеленой энергетики на оптовом рынке к 2020 году должна составить 2,5%, или около 6 ГВт.

Для достижения этих значений с 2013 г. создана система поддержки ВИЭ на российском оптовом энергетическом рынке: ежегодно проходит отбор ветровых электростанций, солнечных электростанций и малых ГЭС, которые могут заключить договоры на поставку мощности, гарантирующие возврат инвестиций за счет повышенных платежей потребителей.

В начале 2015 г. правительством также были приняты меры по поддержке ВИЭ на розничном рынке. Так, сетевые организации обязали закупать их электроэнергию, но не более 5% от объема потерь в сетях. Механизм поддержки распространяется на объекты зеленой энергетики, использующие биогаз, биомассу, свалочный газ, энергию солнца, ветра, и на малую гидроэнергетику.

Проекты в России

Анализируя уровень эффективности уже реализованных проектов по использованию возобновляемых источников энергии в России, в свое время одобренных Министерством экономического развития по предложению Сбербанка (приказ №709 от 30 декабря 2010 г.) и получивших инвестиции в рамках Киотского протокола, на данный момент можно отметить 2 знаковых мегапроекта.

  • Выработка энергии с использованием древесных отходов вместо угля, г. Онега (Архангельская область).

В рамках проекта компанией KPA Unicon были поставлены в Россию две котельные Biograte мощностью 17 МВт тепла с резервным дизельным котлом мощностью 9 МВт тепла. Общая мощность котельной установки составляет 43 МВт тепла. Котлы Biograte 17 сжигают древесные отходы, в основном влажную кору, получаемую с лесопильного предприятия ОАО "Онежский ЛДК".

Целью данного проекта является модернизация имеющихся отопительных котлов и введение в действие теплоэлектроцентралей, использующих древесные отходы.

В целом по программе замещения привозного топлива на древесное топливо в Архангельской области переведены 43 котельные, построены 10 новых биотопливных котельных. Зеленая энергия уже вырабатывается в городах Онега, Североонежск, на биологическое топливо переведена отопительная инфраструктура Виноградовского района, завершается строительство котельной на древесных отходах в поселке Октябрьский на юге Архангельской области.

Архангельская область в настоящее время динамично переходит на использование альтернативных видов топлива. Удельный вес альтернативной энергетики в топливном балансе вырос в период с 2007 по 2015 г. с 18% до 37%, ожидается, что в 2020 г. данный показатель достигнет уровня в 44%.

В общей сложности в Поморье уже реализованы проекты по производству альтернативного топлива на 250 тыс. тонн в год; на стадии планирования находятся проекты, которые увеличат производство древесных гранул на 150 тыс. тонн в год. По данным прогноза Правительства Архангельской области, к 2020 г. годовой объем производства биологического топлива в регионе может достичь 400 тыс. тонн.

Ожидается, что за ближайшие пять лет Архангельская область почти на 50% заменит привозное топливо на энергоносители из древесных отходов. Это даст региону возможность примерно на 1/3 уменьшить затраты на энергетику, нарастить экспортную составляющую и обеспечить рабочими местами в сфере зеленой энергетики предприятия малого бизнеса.

  • Проект по выработке энергии из биоотходов, г. Братск (Иркутская область ), реализованный на базе промышленной площадки филиала группы "Илим".

Цель проекта заключается в повышении эффективности выработки тепловой и электрической энергии на основе использования пищевых отходов. Ожидалось, что модернизация местного производства электрической и тепловой энергии и улучшение использования пищевых отходов позволят сократить выбросы парниковых газов приблизительно на 1,4 трлн тонн в пересчете на CO 2 за пять лет.

С точки зрения энергоэффективности и экологии данный проект представляет собой настоящий прорыв в лесопромышленной отрасли, позволяющий при серьезном увеличении производства использовать гораздо меньше энергии. Для сравнения: в предшествующем варианте это оборудование покрывало не более 18% от потребляемой филиалом энергии, с запуском СРК предприятие планирует довести этот показатель до 50%.

Также реализуются не менее интересные и уникальные проекты возобновляемой энергетики в Российской Федерации.

  • "Умный вокзал" в г. Анапе: создание комбинированной фотоэлектрической системы мощностью 70 кВт .

На кровле здания вокзала размещены 560 солнечных модулей суммарной мощностью 70 кВт. Для преобразования солнечной энергии использованы четыре солнечных инвертора "Данфосс" серии TLX Pro каждый мощностью 15 кВт. Система инверторов имеет удаленное управление, позволяющее контролировать работу солнечной станции через Интернет.

Совокупный расчетный экономический эффект составляет примерно 1,5 млн руб. Важно, что он сохранится даже при условии возникновения дополнительных затрат, связанных с увеличением потребления электроэнергии и дизельного топлива в пиковые холодные периоды.

Как показал мониторинг электроэнергии, потребляемой на нужды освещения вокзала, отмечается положительная динамика роста экономического эффекта: в августе 2014 г. он составил 122 тыс. руб., в ноябре – 171 тыс. руб., а в январе 2015 г. – 192 тыс. руб.

  • Одна из первых в мире гибридных дизель-солнечных энергоустановок мощностью 100 кВт (с. Яйлю, Республика Алтай).

Гибридная установка мощностью 100 кВт расположена в поселке Яйлю взамен устаревшего дизельного генератора и предназначена для автономного бесперебойного снабжения населенного пункта электроэнергией. Ее эксплуатация дает возможность сократить на 50% ежегодное потребление дизельного топлива.

Указанная установка отечественной разработки комбинирует преимущества солнечной и дизельной генерации, а также использует новейшие научные достижения в сфере накопителей электроэнергии и интеллектуальных систем управления, которые позволяют максимально эффективно распределять нагрузку между фотоэлектрической системой, накопителями и дизельными генераторами.

Как отметил заместитель председателя Правительства Республики Алтай Р. Пальталлер, "дизель-солнечная электростанция, по типу и масштабам первая в России, послужит эффективной базой для научных исследований и образовательных программ в области солнечной энергетики, развитие которой имеет огромное значение в изолированной энергосистеме и труднодоступных районах".

  • Проект Пенжинской ПЭС, основанный на использовании энергии морских приливов, на Камчатке.

Согласно оценкам специалистов института "Гидропроект", на Пенжинской губе (расположена в северо-восточной части залива Шелихова Охотского моря) могут быть построены две крупные приливные электростанции, максимальная мощность которых способна составить до 135 ГВт.

Стоимость строительства Пенжинской ПЭС-1 (Северный створ) оценивается в $60 млрд, ПЭС-2 (Южный створ) – в $200 млрд. Срок реализации первого проекта – 2020-2035 гг. Возврат инвестиций планируется за счет реализации энергоемкого продукта, например водорода; кроме того, не исключено строительство линий электропередач в Хабаровский и Приморский край, в Японию и Китай.

Фактор господдержки

По данным исследований ученых Института энергетики Национального исследовательского университета "Высшая школа экономики", государственная поддержка развития ВИЭ в Российской Федерации является важнейшим фактором роста рынка возобновляемой энергетики в стране.

Отметим, что учеными разработан проект "Дорожной карты развития ВИЭ на территории России до 2035 года", который ориентирован на ликвидацию регуляторных и институциональных барьеров для развития ВИЭ, формирование благоприятного климата для расширения сферы применения ВИЭ, развитие НТП и производство компонентов ВИЭ.

В целом следует сделать вывод, что, несмотря на введение российским правительством в действие серии различных регулятивных инструментов, которые позволяют реализовать отдельные элементы стратегии в сфере возобновляемой энергетики, пока еще рано говорить о конце эпохи углеводородов.

Доля ВИЭ низка как в РФ, так и за рубежом, и будет таковой вплоть до 2035 г. Чтобы и дальше развиваться в этом направлении темпами, соответствующими определению "зеленой революции", и выйти на плановые показатели "заката эпохи углеводородов", необходимо как можно скорее устранить существующие барьеры и привлечь инвесторов для реализации существующих и перспективных проектов использования ВИЭ, что при самых лучших обстоятельствах даст значимый перевес в пользу ВИЭ в энергобалансе страны, но уже за пределами 2035-2040 гг.

Иван Капитонов, доцент кафедры международной коммерции Высшей школы корпоративного управления (ВШКУ) РАНХиГС, эксперт по ТЭК

В настоящее время исследования по использованию солнечной энергии ведутся на всех континентах. В к 2020 г. предполагают удовлетворить от 10 до 30% своих энергетических потребностей страны за счет солнечных установок, в в 2010 г. - 3%. Национальные программы развития солнечной энергетики приняты в 68 странах.

Солнечная радиация, достигающая внешних границ земной атмосферы, несет энергию в 5,6 106 ЭДж в год (Р = 17 млрд кВт). Около 65 % этой энергии расходуется на нагрев поверхности, испарительно-осадочный цикл, фотосинтез, а также на образование волн, воздушных и океанских течений и ветра, 35% солнечной энергии отражается. Поток солнечной энергии, достигающий земной поверхности, в 9 тыс. раз больше суммарной энергии, производимой в мире в настоящее время с помощью органических видов топлива и урана.

Солнечная энергия обладает рядом преимуществ. Она имеется повсюду, практически неисчерпаема и доступна в одной и той же форме на бесконечно долгий период времени. Чтобы обеспечить свои энергетические потребности в 2100 г., человечеству достаточно использовать меньше 0,1 % падающей на Землю солнечной энергии или сороковую часть солнечной энергии, падающей пустыни. Однако солнечная энергия обладает низкой плотностью потока (800-1000 Вт/м2), ее интенсивность меняется в течении суток, зависит от сезона и т.д. Как падающая, так и рассеянная относится к прямым видам солнечной энергии. Косвенными видами солнечной энергии являются энергия ветра, волн, приливов, тепловые градиенты океана, гидроэнергия и энергия, полученная благодаря фотосинтезу.

Условно можно выделить четыре направления использования солнечной энергии: теплотехническое, фотоэлектрическое, биологическое и химическое. Теплотехническое направление (солнечное теплоснабжение) основано на нагревании теплоносителей, например воды, обычными или сконцентрированными солнечными лучами в специальных устройствах-коллекторах. Этот способ уже стал находить практическое применение в США, Японии, в южных районах нашей страны для опреснения и получения горячей воды, обогрева зданий зимой и охлаждения их летом, для сушки различных продуктов и материалов, питания термопреобразователей и т. п. Уже при сегодняшней эффективности солнечные коллекторы могут оказаться экономически целесообразными вплоть до районов, лежащих на 56-й широте (примерно на широте Москвы). Большое внимание во многих странах уделяется фотоэлектрическому способу использования электрической энергии.

К существенному прогрессу здесь привели открытия, сделанные за последние 10 - 20 лет в физике и химии полупроводников. На их основе были созданы фотоэлектрические преобразователи - солнечные батареи, которые ныне широко используются на космических кораблях. КПД батарей составляет 12-15%, а на лабораторных образцах достигнуты и значительно лучшие результаты (28 - 29 %).

Теоретические исследования привели к выводам о принципиальной возможности достижения в полупроводниковых структурах с переменной шириной запрещенной зоны, использующих объемный фотоэффект, коэффициента полезного действия, близкого к 90%. Однако, широкое использование полупроводниковых преобразователей в наземной энергетике сдерживается из-за их пока еще высокой стоимости (стоимость выработки электроэнергии солнечными батареями выше, чем при традиционных способах). Следовательно, одно из главных направлений здесь - разработка более дешевых преобразователей, например, с использованием пленочных и органических полупроводников, и менее дорогих технологий их производства.

Геотермальная энергетика на базе термальных (горячих подземных) вод развивается достаточно интенсивно в США, на , в , Италии, Японии, где построены геотермальные тепловые электростанции. В России большие ресурсы геотермальной энергии имеются на Камчатке, Сахалине и Курильских островах, меньшие - на Кавказе. Геотермальная энергия может применяться в сельском (обогрев теплиц) и коммунальном (горячее водоснабжение) хозяйствах. К геотермальному водоснабжению подключены некоторые населенные пункты Дагестана, Ингушетии, Краснодарского и Ставропольского краев, Камчатки.

Океаны содержат огромный потенциал в виде тепловой энергии по глубине толщи воды (радиации, температур верхнего и нижнего слоев воды), а также энергию океанических течений, морских волн и приливов. В мире наиболее развиты работы по приливным электростанциям (ПЭС). В 1966 г. во Франции построена ПЭС «Ранс», вырабатывающая 500 млн кВт ч электроэнергии в год, в 1968 г. в России - Кислогубская ГТЭС на , в 1984 г. - ПЭС в Канаде мощностью 20 МВт.

Перспективно производство энергии биомассы, получаемой в результате переработки органических отходов. Разработаны технологии производства биогаза и этанола, которые можно использовать как топливо и компост (органические удобрения) из органических отходов животноводческих комплексов, свинокомплексов, птицефабрик, городских сточных вод, бытовых отходов, отходов деревообрабатывающей промышленности.

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии — в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

«Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор . Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 — сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 — соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 — сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 — подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 — изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 — обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные . Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы . Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими . Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги . При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти , вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор , который вырабатывает переменный ток;
  • Контроллер управления лопастями , отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи , нужны для накопления и выравнивания электрической энергии;
  • Инвертор , выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта , необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 — изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 — изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 — переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.

К нетрадиционным источникам энергии относят энергию солнца, ветра, а также ту, которая вырабатывается мускульными усилиями человека. Подробности узнаем ниже.

Альтернативные источники энергии – это разнообразные перспективные способы получения, а также передачи полученной электроэнергии. При этом такие источники энергии, возобновляемые, и приносят минимальный вред окружающей среде. К таким источникам энергии относятсясолнечные панели и солнечные станции.

Они в свою очередь подразделяются на 3 типа получения энергии с помощью:

  • Фотоэлементов;
  • Солнечных панелей;
  • Комбинированных вариантов.

Популярно использование систем зеркал, которые нагревают воду до высоких температур, в результате чего получается пар, который, проходя через систему труб, крутит турбину. Ветряки и ветряные станции дают ток за счет энергии ветра, который крутит специальные лопасти, соединенные с генераторами.

Популярно использование энергии волн, а также приливов и отливов.

Как показывали опыты, такие электростанции способны вырабатывать около 15 кВт, что значительно превосходит по мощности солнечные и ветровые электростанции.

Из геотермальных источников горячая вода широко используется для вырабатывания электроэнергии. Интересно использование кинетической энергии в некоторых помещениях, например, в спортивных залах, где движущиеся части тренажеров соединены с помощью тяг с генераторами, которые, в результате движения людьми, вырабатывают электроэнергию.

Нетрадиционные источники энергии: способы получения

Нетрадиционные источники энергоснабжения – это в первую очередь получение электроэнергии с помощью ветра, солнечного света, энергии волн приливов и отливов, а также с использованием геотермальных вод. Но, помимо этого, есть и другие способы с использованием биомассы и других методов.

А именно:

  1. Получение электричества из биомассы. Такая технология подразумевает под собой производство из отходов биогаза, который состоит из метана и углекислого газа. Некоторые экспериментальные установки (гумиреактор от Михаэль) перерабатывают навоз, солому, что позволяет получить из 1 т материала 10–12 м 3 метана.
  2. Получение электричества термальным способом. Преобразование тепловой энергии в электричество путем нагрева одних соединенных между собой полупроводников, состоящих из термоэлементов и охлаждения других. В результате разницы температур, получается электрический ток.
  3. Водородная ячейка. Это устройство, которое из обычной воды путем электролиза позволяет получить достаточно большое количество водородно-кислородной смеси. При этом расходы на получение водорода минимальны. Но такое получение электроэнергии пока только лишь находится в стадии экспериментов.

Еще одной разновидностью получения электроэнергии является специальное устройство, которое называется двигатель Стирлинга. Внутри специального цилиндра с поршнем находится газ или жидкость. При внешнем нагреве объем жидкости или газа увеличивается, поршень двигается и заставляет работать в свою очередь генератор. Далее газ или жидкость, проходя по системе труб, охлаждается и двигает поршень обратно. Это довольно грубое описание, но дает понять, как работает данный двигатель

Варианты альтернативной энергии

В современном мире из-за некоторого ограничения природных ресурсов тепла и электроэнергии, некоторые люди используют альтернативные источники энергии. Одними из основных направлений альтернативной энергетики является поиск и использование нетрадиционных видов и источников.

Источники, с помощью которых можно получить электричество:

  • Являются возобновляемыми;
  • Могут успешно заменить традиционные;
  • Постоянно усовершенствуются, ведутся разработки и исследования.

Оснащение пъезоэлементами высокой мощности турникетов в метро и на железнодорожных станциях позволяет, при наступлении на специальные пластины, от давления человеческого веса вырабатывать электроэнергию. Такие действующие установки в качестве эксперимента установлены в некоторых городах Китая и Японии.

Зеленая энергетика – получение биогаза, которым впоследствии можно отапливать дома из морских водорослей. Установлено, что с 1 га водной поверхности, занятой зелеными водорослями, можно получить до 150 000 м 3 газа. Использование энергии спящих вулканов, вода закачивается в вулкан, под воздействием тепла и высоких температур, превращается в пар, который по специальным трубам поступает к турбине и крутит ее. В настоящее время в мире действует всего 2 таких экспериментальных установки. Использование сточной воды с помощью специальных ячеек, в которых находятся особенные бактерии, которые окисляют органику, приводит к тому, что в ходе химических процессов, происходит выработка электронов и, как следствие, электричества.

Источники энергии дома: варианты

В связи с ростом тарифов на энергию многие люди начинают задумываться не только об экономии энергии, но и об дополнительных источниках энергии. Некоторые люди предпочитают сделать самоделки своими руками, а некоторые предпочитают какие-либо готовые решения, к которым могут относиться определенные варианты.

А именно:

  1. Установка на стекла солнечных панелей, которые обладают высокой прозрачностью, благодаря чему их можно размещать даже в многоэтажных домах. Но при этом их КПД даже в солнечную ясную погоду не превышает 10%.
  2. Для освещения некоторых участков помещения используются светодиоды и светодиодные лампы на небольших аккумуляторах соединенных с солнечной панелью. Достаточно в течение дня заряжать, таким образом, аккумулятор чтобы вечером получить освещение.
  3. Установка традиционных солнечных панелей, которые позволяют заряжать аккумуляторы и от них уже через инвертор частично питать домашние приборы и лампы. Можно также вырабатывать горячую воду в теплое время года путем установки вакуумного насоса и теплового коллектора на крышу.

У жителей, проживающих в городских условиях, к сожалению, выбор дополнительных источников энергии ограничен, в отличие от тех, кто проживает в загородных домах. В частном доме гораздо больше возможностей сделать автономное электроснабжение. А также сделать для загородного дома или на даче автономные независимые системы обогрева.

Отопление для частного дома: альтернативные источники энергии

Среди наиболее распространенных способов получения электроэнергии является движущая сила ветра. Достаточно поставить около загородного дома высокую мачту с движущимися лопастями, соединенными с генератором, чтобы получать электрический ток и заряжать аккумуляторы.

Для получения тепла, можно использовать тепловые насосы, при их использовании, можно брать тепло практически из любого места:

  • Воздуха;
  • Воды;
  • Земли.

Принцип их работы, как в холодильнике, только при прокачивании через насос воздуха или воды, получается тепло. Самодельные конструкции, ничуть не уступают промышленным. В домашних условиях можно самостоятельно изготовить подобные конструкции достаточно найти чертежи и изготовить ветряк, чтобы получить дешевое электричество буквально из воздуха. Есть и другие виды и возможности получить электроэнергию и отопление для частного дома.

Эффективно использование обыкновенного генератора, особенно в северных регионах России, так как, при недостатке солнечного света, панели просто бесполезны.

То же самое касается и тепловых конвекторов, которые предназначены для нагрева воды. Несколько проще для получения тепла использование котла на биотопливе, в качестве материала для топки используются прессованные опилки, гранулы, в том числе и из соломы и торфа. Но такие котлы на биотопливе стоят несколько дороже, чем работающие на газе.

Ток и тепло своими руками: альтернативная энергетика для дома

Дармовая электроэнергетика для квартиры или частного дома всегда интересовала людей, так как в последние годы тарифы на отопление и электроэнергию только лишь растут. И для экономии, многие люди стараются найти варианты получения тепла и энергии даром. Для этого изготавливают разные системы, в том числе пытаются изобрети вечный источник, и придумывают необычные и новые способы получения тока и тепла.

Относительная бесплатная энергетика (сборка солнечных панелей своими руками):

  • Можно приобрести части солнечной батареи в Китае;
  • Самостоятельно все собрать;
  • Как правило, к каждому комплекту прилагается схема сборки.
  • Все это позволяет самостоятельно собрать панель и схему питания, в частности квартиры или частного дома.

Безтопливная халявная энергетика получается из электромагнитных волн – любые колебания можно преобразовать в электричество. Правда КПД таких схем очень мал, но, тем не менее, с помощью специально сделанных приборов можно заряжать телефоны и прочую мелкую бытовую технику.

Правда зарядка займет довольно длительное время.

Для получения тепла, некоторые умельцы используют метан, который в свою очередь получают из навоза животных и прочих отходов. Правильно сделанная система является хорошим вариантом для получения тепловой энергии и обогрева дома, а также для приготовления пищи.

Солнце и ветер, как альтернативные виды энергии

Альтернатива получения, как тепла, так и электричества, для многих людей является актуальной Малая солнечная энергетика – это использование солнечных батарей на основе кремния, количество получаемой энергии зависит от количества батарей, широты местонахождения дома или иного помещения.

Интересна технология получения энергии с помощью генераторов, достаточно к генератору подключить контроллер заряда, и соединить всю схему с аккумуляторами, так можно получить достаточное количество энергии.

Актуально использование специальных термоэлектрических преобразователей энергии тепла в электричество, проще говоря, использование термопары из полупроводников. Одна часть пары нагревается, вторая охлаждается, в результате этого возникает свободная электроэнергия, которую можно использовать в быту. Можно использовать в качестве выработки энергии детей, достаточно соединить на детской площадке качели с динамо-машиной с тем, чтобы получать небольшой процент электроэнергии, который может использоваться для освещения детской площадки.

Бесплатная электроэнергия своими руками (видео)

Альтернатор или, проще говоря, генератор электроснабжения на сегодняшний день является наиболее привычным способом получения электрической энергии. Но, несмотря на это, находится достаточно много возможностей для получения электроэнергии с использованием альтернативных источников по всему земному шару.

Электростанции связаны друг с другом и отдают электроэнергию в энергосистему региона или страны. Из этой системы получают электроэнергию разнообразные по составу, мощности, режиму работы и другим показателям потребители. Такое объединение в энергосистему позволяет: уменьшить суммарную установленную мощность электростанций; резервировать мощность за счет возможного маневрирования станций разного типа; уменьшить общий расход топлива; увеличить надёжность электроснабжения потребителей за счет дополнительных взаимных связей; повысить экономичность выработки электроэнергии путём оптимального распределения электрических нагрузок между станциями различных типов.

Рис.1.14.

Суммарная электрическая нагрузка группы потребителей, подключенных к электроэнергетической системе, зависит от многих факторов: состав потребителей, их мощность, режим работы, используемая технология и оборудование, время суток и года, климатические условия и т.д. Примерный суточный график электрической нагрузки промышленного района представлен на рис.1.14. Для него характерны неизменная за сутки (базисная) нагрузка Р3; слабопеременная (полупиковая) нагрузка от Р3 до Р2; пиковая нагрузка Р1. В каждый момент времени в электроэнергетической системе должен существовать баланс вырабатываемой и потребляемой мощности (с учетом потерь). В противном случае режим работы энергосистемы в целом и отдельных ее элементов может стать аварийным вплоть до "развала", т.е. полного отключения друг от друга всех источников и потребителей электроэнергии. Для поддержания баланса мощности необходимо регулировать, изменять мощность, генерируемую на электростанциях. Разная мощность и инерционность энергоблоков обусловливают определенные закономерности их использования, как с технической, так и с экономической точки зрения. Базисную нагрузку несут наиболее мощные и инерционные электростанции - АЭС и крупные ТЭС, ГРЭС. Полупиковую нагрузку покрывают маневренные агрегаты ГЭС, ГАЭС и ТЭЦ. Пиковую нагрузку обеспечивают гидрогенераторы, ГТУ, ПГУ.

Конкретный состав электростанций в регионе может частично менять рассмотренный вариант распределения нагрузок, но общие принципы остаются неизменными.

Использование альтернативных источников энергии

Рост народонаселения, промышленное и социальное развитие общества требуют значительного увеличения производства энергии. При этом к середине двадцать первого века станет вполне реальной острая нехватка органических энергоносителей, которые дают сегодня около 80% всей востребованной энергии. Стоимость добычи и транспортировки топлива постоянно растет, и процесс этот будет продолжаться, т.к. новые месторождения зачастую находятся в удалённых, труднодоступных районах, на значительной глубине залегания. Удорожание топлива связано и с тем, что нефть, газ, уголь являются важным сырьем для многих, отраслей промышленности, и утверждение “топить нефтью всё равно, что топить ассигнациями” не теряет своей актуальности.

Поэтому проводятся работы по поиску новых, альтернативных видов источников энергии, в том числе возобновляемых и экологически чистых. Некоторые из этих разработок рассмотрены ниже.

Магнитогидродинамические (МГД) установки. Принцип работы этих установок позволяет непосредственно преобразовывать тепловую энергию в электрическую (рис.1.15). Между металлическими пластинами 1, расположенными в сильном магнитном поле, пропускается струя 2 ионизированного газа. В соответствии с законом электромагнитной индукции наводится ЭДС, вызывающая протекание электрического тока между электродами внутри канала генератора и во внешней цепи. Отсутствие в МГД-генераторе движущихся частей позволяет достичь температуры рабочего тела 2550…2600 0С на входе и обеспечить КПД термического цикла 70...75%.

MГД-yстановки могут работать по различиям схемам. Один из вариантов - с ядерным реактором по замкнутому циклу (рис.1.15.б.). Рабочее тело (аргон или гелий с добавлением цезия) нагревается в ядерном реакторе или в высокотемпературном теплообменнике 3 и поступает в МГД-канал 4, где тепловая энергия движущейся плазмы превращается в электрическую. Отработавшие в МГД-канале газы, имеющие температуру около 1500 0С, поступают в парогенератор 5, который обеспечивает работу паротурбинной установки 6. МГД-цикл замыкается через компрессор 7, который возвращает газ в реактор или в теплообменник 3.


Рис.1.15.

а - принцип работы МГД- генератора; б - МГД- установка с ядерным реактором.

Мощность опытно-промышленной МГД-установки составляет 25 МВт. В стадии технического освоения находится установка мощностью 500 МВт. В этом процессе есть ряд трудностей, сдерживающих темпы внедрения МГД-генераторов: создание магнитных полей с высокой индукцией; достижение высокой проводимости плазмы при температурах до 2400…2500 0С; создание термо-жаростойких материалов; получение переменного тока, который приходится инвертировать из постоянного, вырабатываемого МГД-установкой. Тем не менее, разработка и внедрение МГД-генераторов имеет достаточно хорошие перспективы.

Термоядерные установки. Создание промышленных установок такого типа способно практически полностью решить проблему получения необходимого количества энергии. Запас изотопов дейтерия и трития, исходного топлива для термоядерных реакторов, на Земле практически неограничен. В процессе термоядерной реакции выделяется колоссальная энергия. Это происходит на Солнце, а также при взрыве водородной бомбы. Чтобы управлять таким процессом, следует обеспечить ряд условий: плотность топлива не менее 1015 ядер в 1 см3; температура 100…500?106 градусов. Данное состояние топлива должно удерживаться, доли секунды.

Работы по созданию термоядерного реактора интенсивно проводились в СССР, США, Японии. Были получены определённые положительные результаты, например, установка "ТОКОМАК" в институте атомной энергии им. И.В.Курчатова. Однако технические и научные проблемы пока не позволили создать реальную промышленную термоядерную установку.

Солнечные электростанции. Земля получает ежегодно от Солнца 1017 Вт энергии, что в 20000 раз больше современного уровня потребления. Естественным является преобразование солнечной энергии в тепловую. Такие установки используются человеком издревле. Известен и достаточно простой способ преобразования солнечной энергии в электрическую - с помощью фотоэлементов. Поэтому работы по созданию солнечных электростанций (СЭлС) проводятся во многих странах. Особое значение при этом имеет экологическая чистота и возобновляемость такого энергоресурса. В результате за последние 50 лет сооружены десятки СЭлС в США, Австралии, Италии, Океании и других, климатически пригодных регионах. В СССР была построена Крымская СЭС мощностью 5 МВт, проектировалась станция в Средней Азии общей мощностью 200 МВт.

Однако существуют значительные трудности по созданию и использованию СЭлС, которые не позволяют пока солнечным электрическим станциям в полном объеме конкурировать с ТЭС и ГЭС. Это непостоянство солнечного излучения по времени суток, года и в зависимости от погодных условий; низкая плотность излучения у поверхности Земли; недостаточные технические характеристики существующих фотоэлементов и сложность их утилизации. КПД установок СЭлС составляет в настоящее время около I5%, а получение значительных мощностей связано с размещением оборудования на больших территориях в десятки квадратных километров и соответствующим расходом материалов. Тем не менее, работы по совершенствованию СЭлС продолжается.

Геотермальные станции (ГеоТЭС). Такие станции в качестве источника энергии используют тепло земных недр. Основные типы ГеоТЭС работают на горячей воде под давлением, на воде с паром, на сухом паре или газе (петротермальная энергия).

В среднем на каждые 30...40 м в глубь Земли температура возрастает на 1 0С и на глубине 10…15 километров она достигает 1000-- 1200 0С. В некоторых же частях планеты температура достаточно высока в непосредственной близости от поверхности. В этих местах бьют мощные горячие подземные воды, пар, газ. Здесь могут быть размещены ГеоТЭС. Например, в долине Гейзеров в США общая мощность ГеоТЭС составляет 900 МВт, ГеоТЭС Ларделло в Италии мощностью 420 МВт, станция Вайракет в Новой Зеландии - 290 МВт. Работают достаточно мощные ГеоТЭС в Мексике, Японии, Исландии и в других странах. Российская ГеоТЭС на Камчатке имеет мощность 5 МВт.

Экологическая чистота, возобновляемость тепловой энергии Земли, достаточная простота конструкции являются несомненными достоинствами ГеоТЭС.

Недостатки геотермальных станций - жесткая привязка к месту выхода тепла на поверхность Земли и ограниченные параметры рабочего тела по давлению и температуре.

Приливные электростанции (ПЭС). Современные ПЭС используют фазу прилива и отлива, их агрегаты (турбины) обратимы и работают при движении воды из моря в залив и наоборот (рис.1.16). Такие установки способны работать в турбинном и насосном режиме.

ПЭС работают в России (Кислогубская, 400 кВт), Японии, Франции и других странах. Наиболее мощная ПЭС расположена в устье реки Ранс во Франции - 240 МВт.


Рис.1.16.

а - вид сверху; б - разрез

ВГП - высший горизонт прилива; ВГО - высший горизонт отлива

Приливная энергия экологически чиста, возобновляема, неизменна в годовом и многолетнем периодах, однако, значительно меняется в течение лунного месяца и может быть использована только в конкретных географических точках на побережьях морей и океанов при наличии необходимого рельефа.

Электростанции, использующие морскую энергию. Энергия волн, течений, градиентов температур и солености морей и океанов может быть преобразована в электрическую. Спроектированы и испытаны несколько типов преобразовательных установок. Например, турбина "Кориолис" мощностью 80 МВт предназначена для станций, использующих океанические течения.

Ветровые электростанции (ВЭС). Человек всегда использовал энергию ветра. Преобразование этой энергии в электрическую принципиально весьма просто. В СССР уже в 20-е годы была сооружена Курская ВЭС мощностью 8 кВт. Крупнейшая в мире установка мощностью 1050 кВт в одном агрегате работала в США с 1941 г.

Однако при определённых достоинствах (экологическая чистота, возобновляемость, простота и дешевизна использования), энергия ветра имеет и существенные недостатки, ограничивающие строительство ВЭС. Это большая неравномерность плотности ветровой энергии, зависимость от географических, климатических, метеорологических факторов и др. Поэтому в настоящее время экономически оправданными являются ВЭС ограниченной мощности локального использования.

Перспективы динамики развития электрических станций

Динамика развития мировой и отечественной энергетики указывает на то, что в ближайшее время примерно сохранится существующий баланс между ТЭС, АЭС и ГЭС. Приоритет при этом будет отдан газоугольной стратегии, а использование мазута на ТЭС будет снижаться. Мировые цены на энергоносители, подверженные влиянию многочисленных факторов, способны в различной степени и на различных временньiх интервалах скорректировать указанную стратегию.

Дальнейшее развитие получат ПГУ и ГТУ. Из сравнительно новых направлений приоритетными являются МГД-установки.

Будет развиваться нетрадиционная энергетика (солнечная, приливная, геотермальная), использующая экологически чистые возобновляемые природные ресурсы. Продолжатся научно-исследовательские и опытно-конструкторские работы по созданию и освоению термоядерных установок, термоэлектрических, радиоизотопных, термоэмиссионных, электрохимических генераторов и других агрегатов. Отдельное и очень важное направления работ - энергосбережение всех видов ТЭР, тепловой и электрической энергии.