Запас механической энергии математического маятника. Практическое применение математического маятника. Вычисления на основе закона сохранения энергии

07.04.2019

Небольшой шарик, подвешенный на легкой нерастяжимой нити, способен совершать свободное колебательное движение (рис. 598).

рис. 598
 Для описания движения маятника будем считать шарик материальной точкой, пренебрежем массой нити и сопротивлением воздуха. Такая модель называется математическим маятником .
 В качестве координаты, описывающей положение шарика, выберем угол отклонения нити от вертикали φ . Для описания изменения этой координаты удобно использовать уравнение динамики вращательного движения

где J = ml 2 − момент инерции системы, ε = Δω/Δt − угловое ускорение тела (вторая производная от угла поворота), M − суммарный момент внешних сил действующих на систему 1 . На шарик действуют силы тяжести mg и натяжения нити. Момент силы натяжения нити N относительно точки подвеса равен нулю, поэтому уравнение (1) для подвешенного шарика приобретает вид

или

 Это уравнение описывает колебания маятника, но не является уравнением гармонических колебаний, так как момент сил пропорционален синусу угла отклонения, а не самому углу. Однако, если считать углы отклонения малыми (сколько это − мы выясним позднее), можно воспользоваться приближенной формулой sinφ ≈ φ в этом приближении уравнение (3) превращается в знакомое уравнение гармонических колебаний

где Ω = √{g/l} − круговая частота малых колебаний маятника 2 . Решение этого уравнения мы уже выписывали

здесь φ o − максимальное отклонение нити, то есть амплитуда колебаний. Для простоты будем считать, что начальная скорость шарика равна нулю.
Период малых колебаний маятника выражается через круговую частоту

 Так как малые колебания математического маятника являются гармоническими, то их период не зависят от амплитуды. Этот факт был экспериментально отмечен еще Г. Галилеем. При больших углах отклонения период колебаний математического маятника незначительно возрастает.
 Отметим, что период колебаний математического маятника не зависит также от массы шарика − вспомните, ускорение свободного падения, а также другие характеристики движения тела в поле тяжести Земли также не зависят от массы тела (если, конечно, пренебрегать сопротивлением воздуха).
 Формула (6) может быть использована и используется для экспериментального определения ускорения свободного падения. Длина нити и период колебаний достаточно просто измерить экспериментально, затем с помощью формулы (6) можно рассчитать ускорение свободного падения.
 Попробуем описать движение математического маятника с помощью закона сохранения механической энергии. Кинетическая энергия шарика выражается формулой

 Нулевой уровень отсчета потенциальной энергии совместим с точкой подвеса нити, тогда потенциальная энергия шарика равна

 Уравнения закона сохранения механической энергии (с учетом начальных условий) имеет вид

 Это уравнение также не является уравнением гармонических колебаний. Но, если мы опять будем считать углы отклонения маятника малыми и воспользуемся приближенной формулой

то уравнение (7) перейдет в уравнение гармонических колебаний

или

где обозначено Ω = √{g/l} − круговая частота колебаний, совпадающая с полученной из динамического уравнения (2).
 Конечно, такое совпадение не является случайным − фактически в обоих подходах мы использовали одно и то же приближение малых углов отклонения.

1 В принципе, можно использовать и уравнения динамики поступательного движения, но используемый здесь подход является предпочтительным, так как траекторией движения точки является дуга окружности.
2 Мы выбрали обозначение Ω (это тоже «омега», только заглавная) для собственной частоты малых колебаний, чтобы традиционное обозначение ω − оставить за угловой скоростью движения шарика, которая далее будет фигурировать в наших рассуждениях.

Если тело, прикрепленное к пружине (рисунок 4), отклонить от положения равновесия на расстояние А, например, влево, то оно, пройдя через положение равновесия, отклонится вправо. Это следует из закона сохранения энергии.

Потенциальная энергия сжатой или растянутой пружины равна

где k - жесткость пружины и x - ее удлинение. В крайнем левом положении удлинение пружины x = - А, следовательно, потенциальная энергия равна

Кинетическая энергия в этот момент равна нулю, потому что нулю равна скорость. Значит, потенциальная энергия - это полная механическая энергия системы в этот момент. Если условиться, что сила трения равна нулю, а другие силы уравновешены, то нашу систему можно считать замкнутой и ее полная энергия при движении не может измениться. Когда тело при своем движении окажется в крайнем правом положении (x=А), Его кинетическая энергия снова будет равна нулю и полная энергия опять равна потенциальной. А полная энергия не может измениться. Значит, она снова равна

Это и означает, что и вправо тело отклонится на расстояние равное А.

В положении равновесия, напротив, потенциальная энергия равна нулю, потому что пружина не деформирована, х=0. В этом положении полная энергия тела равна его кинетической энергии

где m - масса тела и - его скорость (она в этот момент максимальна). Но эта кинетическая энергия тоже должна иметь значение равное. Следовательно, при колебательном движении происходит превращение кинетической энергии в потенциальную и обратно. В любой же точке между положениями равновесия и максимального отклонения тело обладает и кинетической энергией, и потенциальной, но их сумма, т.е. полная энергия в любом положении тела, равна. Полная механическая энергия W колеблющегося тела пропорциональна квадрату амплитуды и его колебаний

Маятники. Математический маятник

Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Значит груз, подвешенный на веревке, это колебательная система подобная маятнику настенных часов. У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника - это то положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну, то в другую сторону от положения равновесия. Мы знаем, что наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство - зависимости амплитуды от условий в начале движения - характерно не только для свободных колебаний маятника, но и вообще для свободных колебаний очень многих колебательных систем.

Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела - довольно сложная задача. Проще обстоит дело для математического маятника. Математическим маятником называется подвешенный к тонкой нити груз, размеры которого много меньше длины нити, а его масса манного больше массы нити. Это значит, что тело (груз) и нить должны быть такими, чтобы груз можно было считать материальной точкой, а нить невесомой. Из наблюдений над подобными маятниками можно установить следующие простые законы.

1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2. Сида, действующая на тело в любой точке траектории, направлена к положению равновесия, а в самой точке равновесия равна нулю.

3. Сила пропорциональна отклонению тела от положения равновесия.

Рис. 5.

4. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническим, и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» - равный, «хронос» - время).

Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила (в православном храме центральная люстра, светильник со множеством свечей или лампад) на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (глава 8), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом.

Это свойство маятника оказалось не только удивительным, но и полезным. Галилей предложил использовать маятник в качестве регулятора в часах. Во времена Галилея часы приводились в действие грузом, а для регулировки хода применялось грубое приспособление типа лопастей ветряной мельницы, которое использовало сопротивление воздуха. Для отсчета равных промежутков времени можно было бы использовать маятник, ибо малые колебания совершаются за то же время, что и большие, вызываемые случайными порывами ветра. Столетие спустя после Галилея часы с маятниковым регулятором вошли в обиход, но мореплаватели по-прежнему нуждались в точных часах для измерения долготы на море. Была объявлена премия за создание таких морских часов, которые позволяли бы измерять время с достаточной точностью. Премию получил Гариссон за хронометр, в котором для регулирования хода использовались маховое колесо (баланс) и специальная пружина.

Выведем теперь формулу для периода колебаний математического маятника.

При качаниях маятника груз движется ускоренно по дуге ВА (рис. 5, а) под действием возвращающейся силы P 1 , которая меняется при движении.

Расчет движения тела под действием непостоянной силы довольно сложен. Поэтому для упрощения поступим следующим образом.

Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 5, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного - по-прежнему в плоскости рисунка и другого - в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения - обращения маятника по конусу - будет тот же, что и период качания в одной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому - вращение по конусу.

Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:

Если угол отклонения от вертикали невелик (малые амплитуды!), то можно считать, что возвращающаяся сила Р 1 направлена по радиусу окружности ВС, т. е. равна центростремительной силе:

С другой стороны, из подобия треугольников ОВС и DBE следует, что ВЕ: BD=CB: OB. Так как ОВ=l, CB=r, BE=P 1 , то отсюда

Приравняв оба выражения Р 1 друг к другу, мы получаем для скорости обращения

Наконец, подставив это в выражение периода Т, находим

Итак, период математического маятника зависит только от ускорения свободного падения g и от длины маятника l, т. е. расстояния от точки подвеса до центра тяжести груза. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Другими словами, получились путем расчета те основные законы, которые были установлены ранее из наблюдений.

Но этот теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен 2?.

На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника l и определив из большого числа колебаний период Т, мы можем вычислить с помощью полученной формулы g. Этот способ широко используется не практике.

маятник колебание резонанс координата

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором , т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение a τ маятника пропорционально его смещению x , взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

M = -(mg sin φ) d .

Здесь d - расстояние между осью вращения и центром масс C .

Рисунок 2.3.2.

Физический маятник

Знак «минус» в этой формуле, как обычно, означает, что момент сил стремится повернуть маятник в направлении, противоположном его отклонению из положения равновесия. Как и в случае математического маятника, возвращающий момент M пропорционален . Это означает, что только при малых углах, когда, физический маятник способен совершать свободные гармонические колебания. В случае малых колебаний

и второй закон Ньютона для физического маятника принимает вид

где ε - угловое ускорение маятника, I - момент инерции маятника относительно оси вращения O . Модуль коэффициента пропорциональности между ускорением и смещением равен квадрату круговой частоты:

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Более строгий вывод формул для ω 0 и T можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение ε есть вторая производная углового смещения φ по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний.

Коэффициент в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции I можно выразить через момент инерции I C относительно оси, проходящей через центр масс C маятника и параллельной оси вращения:

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:

С криншот квеста про определ ить планеты

Определение

Математический маятник - это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Уравнение движения математического маятника

Математический маятник - классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

\[\ddot{\varphi }+{\omega }^2_0\varphi =0\ \left(1\right),\]

где $\varphi $ - угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $\varphi (t):$

\[\varphi (t)={\varphi }_0{\cos \left({\omega }_0t+\alpha \right)\left(2\right),\ }\]

где $\alpha $ - начальная фаза колебаний; ${\varphi }_0$ - амплитуда колебаний; ${\omega }_0$ - циклическая частота.

Колебания гармонического осциллятора - это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

\[\ {\omega }_0=\sqrt{\frac{g}{l}}\left(3\right).\]

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ - кинетическая энергия маятника; $E_p$ - потенциальная энергия маятника; $v$ - скорость движения маятника; $x$ - линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол - смещение связан с $x$ как:

\[\varphi =\frac{x}{l}\left(6\right).\]

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ - максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={\omega }_0x_m$ - максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

\[\frac{mv^2}{2}=mgh\ \left(1.1\right).\]

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=\frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1\ м$, совершает колебания с периодом равным $T=2\ с$? Считайте колебания математического маятника малыми.\textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87\ \frac{м}{с^2}$