Кинетическая и потенциальная энергия. Т. Кинетическая энергия

19.09.2019

В § 88 выражение было названо кинетической энергией тела. Рассмотрим подробнее содержание этого понятия.

Допустим, что тело массы было вначале неподвижно (рис. 5.8). На него подействовала сила под действием которой тело прошло расстояние приобретя скорость При этом сила совершила работу и будет иметь место соотношение

Если взять другое тело массы и той же силой совершить такую же работу то для возникшего движения снова будет справедливо соотношение

где конечная скорость тела массы

Одна и та же работа силы сообщает телам с разной массой всегда один и тот же запас движения, и это выражается равенством

Таким образом, кинетическую энергию тела можно рассматривать как меру запаса движения данного тела. С помощью этой меры можно сравнивать между собой те запасы движения, которыми обладают различные тела или системы тел. Замечательно то, что эта мера учитывает любые движения независимо от их направления.

Поэтому она может быть использована для расчета не только упорядоченных движений тел, но и неупорядоченных, хаотических движений, происходящих в сложных системах многих тел. Используя, например, понятие кинетической энергии, можно количественно определить тот запас движения, которым обладает некоторая масса газа. Молекулы газа совершают непрерывные хаотические движения. Сумма кинетических энергий этих молекул определит энергию всей массы газа, т. е. даст количественную характеристику интенсивности теплового движения, запасенного в этом газе. Она также даст количественное представление о состоянии движения системы тел в целом.

Отметим, что получить представление о состоянии внутренних движений в системе тел с помощью вектора количества движения нельзя. Возьмем, например, два тела одинаковой массы которые движутся в противоположных направлениях с равными по модулю скоростями Количество движения каждого из тел будет равно Это дает представление о том, как движется каждое тело в отдельности. Количество же движения всей системы в целом, равное векторной сумме количеств движения отдельных тел, будет равно нулю.

Зная только этот результат (количество движения системы равно нулю), мы даже не можем сказать, движутся ли тела системы вообще. Кинетическая же энергия такой системы будет равна Зная это, во-первых, мы можем сделать вывод о том, что в данной системе тел есть движение, во-вторых, мы можем судить, насколько велик запас этого движения.

Рассмотрим случай, когда тело массы двигаясь со скоростью (рис. 5.9), встречается с другим телом (например пружинкой). При взаимодействии возникают силы, тормозящие движение тела и вызывающие деформацию или движение другого тела. Таким образом, оказывается, что движущееся тело при встрече с другими

телами может совершить некоторую работу по деформации или приведению этих тел в движение. Найдем эту работу.

По третьему закону Ньютона в любой момент времени сила действия тела на пружинку равна силе развиваемой пружинкой: Поэтому работа тела при его торможении равна работе пружинки с обратным знаком:

Подставляя получим

Это дает нам право утверждать, что кинетическая энергия любого тела определяет ту работу, которую может совершить движущееся тело во время остановки при взаимодействии с другими телами. Кинетическая энергия выступает как мера работоспособности движущегося тела. Об этом же говорит и происхождение самого слова «энергия». По-гречески слово «энергия» означает деятельность, работоспособность.

Итак, каждое движущееся тело способно произвести некоторое количество работы. Эта работа определяется массой и скоростью тела. Если тело во время взаимодействия совершает эту работу, то начинает исчезать движение тела. При совершении работы движение тела превращается в движение других тел или их частей. При этом может происходить и превращение механического движения в другие формы движения материи, например превращение механического движения в тепловое.

Окончательный вывод: кинетическая энергия является мерой запаса движения тела и одновременно определяет работу, которую тело способно совершить при взаимодействии с другими телами.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Из уравнения ясно, что единицы кинетической энергии те же, что и единицы работы: (§ 89).

Работа совершается в природе всегда, когда какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Работа силы равна произведению модулей силы и перемещения точки приложения силы и на косинус угла между ними.

А= F · S ·соs , где А Дж); F – сила, (Н); S- перемещение, (м).

Энергия не создается и не уничтожается, а только превращается из одной формы в другую: из кинетической в потенциальную и наоборот. Учитывая значение Ек и Еп, закон сохранения механической

энергии можно записать так:

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h 2 меньше h 1 . Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на Земле).

Полные механические энергии равны между собой, если пренебрегать силой сопротивления воздуха.

Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением.

Рассмотрим случай, когда на тело массой m действует постоянная сила (она может быть равнодействующей нескольких сил) и векторы силы и перемещения направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F∙s. Модуль силы по второму закону Ньютона равен F = m∙a, а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением

Отсюда для работы получаем

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

Тогда равенство (1) можно записать в таком виде:

A = E k 2 – E k 1 . (3)

Теорема о кинетической энергии:

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой т равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

(4)

Физический смысл кинетической энергии:

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия - минимальная работа, которую необходимо совершить, чтобы перенести тело из некой точки отсчёта в данную точку в поле консервативных сил. Второе определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы. Третье определение: потенциальная энергия - это энергия взаимодействия. Единицы измерения [Дж]

Потенциальная энергия принимается равной нулю для некоторой точки пространства, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной точки называется нормировкой потенциальной энергии. Понятно также, что корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей.

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой т вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1).

Если разность h 1 h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

A = F∙s = m∙g∙ (h l – h 2). (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

A = m∙g∙s∙cos a = m∙g∙h , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h" , h" и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

(7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С.

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

A = – (m∙g∙h 2 – m∙g∙h l). (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой т из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

А = – (Е р 2 – Е р 1). (9)

Потенциальная энергия обозначается буквой Е р .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е р тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

E p = m∙g∙h . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей:

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h, где h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

Е p = –m∙gh

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М , находящихся на расстоянии r одна от другой, равна

(11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей, где h – высота тела над поверхностью Земли, М 3 – масса Земли, R 3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот h (h « R 3) равна

Е p = m∙g∙h ,

где – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т. к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

(13)

где Отсюда

(14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

А = –(Е р 2 – Е р 1). (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

Е р = А.

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию тела обозначают символом E п.

Так как E п = A, то

E п = Fh

E п = gmh

E п – потенциальная энергия; g – ускорение свободного падения, равное 9,8 Н/кг; m – масса тела, h – высота, на которую поднято тело.

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.

Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv 2
E k = --
2

E k – кинетическая энергия; m – масса тела; v – скорость движения тела.

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.