Сильный отворот мужчины от женщины на расстоянии. Отворот для избавления от мужчины: как сделать обряд с максимальной эффективностью. Как сделать белый отворот парня от девушки

20.03.2019

Аминокислоты поступают в кровь и ткани из пищеварительного тракта; кроме того, они обра­зуются при деструкции тканевых белков под действием внутриклеточных катепсинов (проте­иназ).

Основная часть аминокислот используется в организме в качестве строительных блоков при синтезе белков. Кроме того, аминокислоты ис­пользуются для синтеза пуриновых и пирими-диновых оснований, гормонов, тема, различных биологически активных пептидов (интерлейки-ны, факторы роста и т.д.), меланина, глюкозы, жирных кислот и ряда других веществ. Глицин и глутамат играют роль нейромедиаторов в ЦНС. Аминокислоты, не использованные для выше­упомянутых целей, подвергаются окислению до СО 2 и Н 2 О с освобождением энергии. В норме при окислении аминокислот освобождается 10-15% образующейся в организме энергии. Окис­ление аминокислот усиливается при избыточном поступлении их в организм, при голодании, са­харном диабете, гипертиреозе, снижении синте­за белков и некоторых других состояниях.

Окислению аминокислот предшествует от­щепление от них аминогруппы и превращение в а-кетокислоты. Согласно существующим пред­ставлениям дезаминирование аминокислот осу­ществляется в два этапа. Первоначально проис­ходит перенос аминогруппы аминокислоты на сс-кетоглутаровую кислоту (трансаминирова-ние). В результате образуются глутаминовая кислота и та или иная кетокислота (например, из аланина - пировиноградная).

СООН Алании


Процесс трансаминирования катализируется трансаминазами, коферментом которых являет­ся пиридоксальфосфат. Образовавкгаяся при этом процессе глутаминовая кислота подвергается окислительному дезаминированию, т.е. отщеп­лению аминогруппы под действием глутаматде-гидрогеназы с образованием иона аммония (NH (") и а-кетоглутаровой кислоты, которая может сно­ва вступить в реакцию трансаминирования или окислиться в цикле трикарбоновых кислот. Ке-токислоты, образующиеся при трансаминирова-нии (например, пировиноградная), также могут окислиться до СО 2 и Н 2 О подобно глюкозе и жирным кислотам. Поскольку реакции транса­минирования и окислительного дезаминирова-ния могут идти как в прямом, так и в обратном направлении, то они играют роль не только в превращении аминокислот в кетокислоты, но и в образовании из кетокислот ряда заменимых аминокислот в том случае, если организм испы­тывает в них потребность. Кроме того, кетокис­лоты могут быть использованы для синтеза глю­козы.

Нарушение процесса трансаминирования в целом организме происходит при гиповитами­нозе В 6 , при недостатке а-кетокислот (голодание, сахарный диабет). Нарушение трансаминирова­ния в отдельных органах, например в печени, происходит при некрозе клеток, что сопровож­дается выходом трансаминаз в кровь. Такое же явление имеет место при инфаркте миокарда. В поврежденных клетках может быть нарушен синтез белковой части трансаминаз.

Процесс окислительного дезаминирования снижается не только в связи с ослаблением трансаминирования, но и при гипоксии, гипо-витаминозах В 2 , РР, С, белковом голодании.

Нарушение процессов трансаминирования и окислительного дезаминирования аминокислот ограничивает их использование для синтеза глю­козы, жирных кислот, заменимых аминокислот, а также их окисление с освобождением энергии. При этом повышается содержание свободных аминокислот в сыворотке крови и в моче (ги-пераминоацидемия и гипераминоацидурия), снижается синтез мочевины. Такие нарушения особенно выражены при обширных повреждени­ях гепатоцитов (вирусные и токсические гепа­титы и др.), так как в этих клетках метаболизм аминокислот происходит наиболее интенсивно.

Наряду с вышеупомянутой внепочечной ги-пераминоацидурией, обусловленной усиленным


поступлением аминокислот из крови в мочу, су­ществует почечная форма гипераминоациду-

рии, связанная с нарушением реабсорбции ами­нокислот в почечных канальцах, при этом со­держание аминокислот в сыворотке крови нор­мально или даже понижено (см. гл. 18). Гипер-аминоацидурия (физиологическая) может наблю­даться у детей раннего возраста в связи с функ­циональной неполноценностью (незрелостью) эпителия почечных канальцев; у беременных женщин повышается экскреция с мочой гисти-дина и ряда других аминокислот.

Одним из путей метаболизма аминокислот является их декарбоксилирование, которое со­стоит в отщеплении от аминокислоты СО 2 . В ре­зультате образуются биогенные амины: гиста-мин - из гистидина, серотонин - из 5-окситрип-тофана, тирамин - из тирозина, у-аминомасля-ная кислота (ГАМК) - из глутаминовой, дофа­мин - из диоксифенилаланина и некоторые дру­гие.

NH,
| Фермент

НС=С-СН„-С - СООН- НС = С-СН, -СН г

-со г

L-гистидин

Этот процесс катализируется декарбоксила-зами, коферментом которых является пиридок­сальфосфат (витамин В с); при его дефиците об­разование биогенных аминов снижается. В час­тности, уменьшается образование у-аминомасля-ной кислоты, которая является основным тор­мозным нейромедиатором, как следствие этого наблюдается частое развитие судорог. Биогенные амины обладают высокой физиологической ак­тивностью. Наряду с ГАМК, серотонин и дофа­мин являются также нейромедиаторами в ЦНС, их повышенное или пониженное содержание в ткани мозга играет роль в патогенезе некоторых форм нейропатологии (нервной депрессии, пар­кинсонизма, шизофрении). Повышенное образо­вание в организме серотонина, наиболее выра­женное при карциноиде (опухоль, развивающа­яся из энтерохромафинных клеток кишечника), сопровождается спазмом мускулатуры бронхов и кишечника, диареей, усилением агрегации тромбоцитов; кроме того, серотонин является мощным вазоконстриктором. Хорошо известна роль гистамина в появлении болевых ощущений,

развитии воспаления и аллергических реакции, в том числе анафилактического шока.

Устранение избытка биогенных аминов про­исходит при участии аминооксидаз, которые катализируют превращение их в альдегиды пос­ле отщепления аминогруппы в виде NH. r Серо-тонин превращается в оксииндолилуксусную кислоту, которая выделяется с мочой.

Наследственные нарушения обмена некото­рых аминокислот. Существуют многочисленные заболевания, обусловленные нарушением мета­болизма аминокислот. С расстройствами мета­болизма фенилаланина связано заболевание фе-нилкетонурией. К этому приводит мутация гена, необходимого для образования фермента фенил-аланингидроксилазы, при участии которой про­исходит превращение фенилаланина в тирозин. При отсутствии данного фермента наблюдается накопление в организме фенилаланина и проме­жуточных продуктов его метаболизма - фенил-пировиноградной, фенилуксусной и фенилмолоч-ной кислот, которые оказывают токсическое дей­ствие на мозг ребенка. Фенилпируват выделяет­ся с мочой, где его можно обнаружить. Основ­ные проявления фенилкетонурии - умственная отсталость, психозы, судорожные припадки, эк­зема, мышиный запах [Марри Р. и соавт., 1993]. Предотвратить развитие болезни можно только ранним переводом ребенка на диету с очень низ­ким содержанием фенилаланина. Болезнь насле­дуется по аутосомно-рецессивному типу.

Одним из заболеваний, обусловленных нару­шением метаболизма тирозина, является алкап-тонурия. Развитие ее связано с генетически обус­ловленным дефицитом фермента оксидазы гомо-гентизиновой кислоты, которая является одним из продуктов метаболизма тирозина. В связи с указанным дефектом гомогентизиновая кислота в большом количестве выделяется с мочой, при­давая ей темно-коричневую окраску. Кроме того, гомогентизиновая кислота накапливается в со­единительной и хрящевой тканях, также обус­ловливая их темное окрашивание (охроноз). Может развиться артрит. Передача дефектного гена осуществляется по аутосомно-рецессивно­му типу. Нарушением метаболизма тирозина обусловлены и такие заболевания, как тирози-ноз (тирозинемия) и альбинизм.

Гистидинемия - заболевание, связанное с за­медлением превращения гистидина в уроканат вследствие дефицита фермента гистидазы. В


крови и моче обнаруживается повышенное со­держание гистидина. Большинство больных ги-стидинемией характеризуются умственной отста­лостью и дефектами речи. Заболевание наследу­ется по аутосомно-рецессивному типу.

Цистиноз - наследственное заболевание, ха­рактеризующееся отложением кристаллов цис-тина во многих тканях и органах, что связыва­ют с нарушением функции лизосом. В моче по­вышено содержание всех аминокислот. Леталь­ный исход наступает в раннем детском возрасте вследствие развития острой почечной недоста­точности.

11.6.5. Нарушение конечного этапа обмена белка и аминокислот

Конечным продуктом обмена белка и амино­кислот является мочевина, выделяющаяся из организма с мочой. Синтез мочевины осуществ­ляется гепатоцитами в орнитиновом цикле. Об­разование мочевины имеет большое физиологи­ческое значение, так как благодаря этому про­цессу происходит обезвреживание высоко ток­сичного продукта - аммиака, отщепляющегося от аминокислот при их дезаминировании, а так­же поступающего в кровь из кишечника. Обезв­реживание аммиака, образующегося в клетках различных органов, в том числе в мозге, дости­гается путем реакции амидирования, т.е. при­соединение его к аспарагиновой и в особенности глутаминовой кислотам с образованием аминов аспарагина и глутамина. Процесс амидирования, так же как и образование мочевины, идет с по­треблением энергии, источником которой явля­ется АТФ.

Синтез мочевины понижается при длитель­ном белковом голодании (недостаток ферментов), при заболеваниях печени (циррозы, острые ге­патиты с повреждением большого числа гепато-цитов, отравление печеночными ядами), а так­же при наследственных дефектах синтеза фер­ментов, участвующих в орнитиновом цикле об­разования мочевины (карбамилфосфатсинтетазы, аргининсукцинатсинтетазы и аргининсукцинат-лиазы). При нарушении синтеза мочевины ко­личество ее в крови и моче снижается и нарас­тает содержание аммиака и аминокислот, т.е. резидуального азота (продукционная гиперазо­темия). Гипераммониемия играет важную роль в патогенезе печеночной энцефалопатии и комы.

Глава 11 / ПАТОФИЗИОЛОГИЯ ТИПОВЫХ НАРУШЕНИЙ ОБМЕНА ВЕЩЕСТВ

Избыток аммиака может в некоторой степени устраняться за счет повышенного образования глутамина и присоединения к а-кетоглутаровой кислоте, которая при этом превращается в глу-таминовую, и ее окисление в цикле трикарбоно-вых кислот резко снижается. Вследствие этого снижается образование АТФ.

Другой причиной накопления небелковых азотистых продуктов в крови (креатинин, моче­вина) является нарушение выделительной фун­кции почек при острой и хронической почечной недостаточности или при нарушении проходи­мости мочевыводящих путей. Возникающая в данном случае гиперазотемия называется ретен-ционной. При этом концентрация остаточного азота в крови возрастает до 140-215 ммоль/л, а содержание небелковых азотистых продуктов в моче снижается. Ретенционная гиперазотемия является одним из факторов, играющих роль в развитии уремической комы.

Возможно развитие смешанной (комбиниро­ванной) формы гиперазотемии, при которой повышенный распад белка в тканях сочетается с недостаточным выведением азотистых продук­тов с мочой. Такое сочетание возможно при ост­рой почечной недостаточности, развившейся на почве септического аборта, или обширном сдав-лении тканей (синдром раздавливания). К ком­бинированной форме гиперазотемии относится гипохлоремическая гиперазотемия, возникаю­щая при неукротимой рвоте, стенозе приврат­ника и профузных поносах.

11.7. ПАТОФИЗИОЛОГИЯ ОБМЕНА НУКЛЕИНОВЫХ КИСЛОТ

Дезоксирибонуклеиновая кислота (ДНК) яв­ляется главной составной частью хромосом. Спе­цифика ее структуры определяет возможность передачи наследственной информации от роди­телей потомству и от исходной клетки к дочер­ним в процессе деления. На молекуле ДНК осу­ществляется синтез всех видов РНК (транскрип­ция), в том числе информационной РНК, кото­рая является матрицей для синтеза специфичес­ких для данного организма белков.

В обмене нуклеиновых кислот можно выде­лить следующие этапы: 1) расщепление посту­пающих с пищей нуклеопротеидов в кишечнике с последующим всасыванием в кровь продуктов


их гидролиза; 2) эндогенный синтез ДНК и РНК; 3) распад нуклеиновых кислот под действием внутриклеточных нуклеаз с образованием конеч­ных продуктов их обмена и выведением из орга­низма.

Нарушение усвоения поступающих с пищей нуклеиновых кислот и продуктов их гидроли­за не имеет существенного значения, так как все высокоорганизованные существа способны синтезировать необходимые для них нуклеино­вые кислоты из имеющихся в клетках метабо­литов. Поступившие из кишечника в кровь нук-леотиды, пуриновые и пиримидиновые основа­ния не включаются ни в синтезируемые нукле­иновые кислоты, ни в пуриновые и пиримиди­новые коферменты, такие как АТФ и НАД, а расщепляются с образованием конечных продук­тов - мочевой кислоты и мочевины. Но при па­рентеральном введении нуклеозидов и нуклео-тидов они включаются в молекулы ДНК и РНК.

11.7.1. Нарушение эндогенного синтеза ДНК и РНК

Образование новых молекул ДНК и РНК про­исходит не только в растущем организме, но и у взрослого человека. Об этом свидетельствует включение введенного в организм радиоактив­ного изотопа фосфора (:12 Р) в их молекулы. Син­тез ДНК наиболее интенсивно протекает в тех тканях, где постоянно происходит регенерация клеток (костный мозг, слизистая желудочно-кишечного тракта и др.). Перед вступлением соматической клетки в митоз (в фазе S митоти-ческого цикла) количество ДНК в ядре удваива­ется, что является необходимым условием удво­ения числа хромосом. Синтез новых молекул РНК происходит во всех клетках, но наиболее интенсивно он протекает в органах, синтезиру­ющих большое количество белков (костный мозг и лимфоидные органы, печень, слизистая же­лудка и кишечника, поджелудочная железа).

Для осуществления синтеза нуклеиновых кислот необходимо присутствие в клетках дос­таточного количества пуриновых и пиримиди-новых оснований, рибозы и дезоксирибозы, а также макроэргических фосфорных соединений. Материалом для синтеза пуриновых и пирими-диновых оснований являются одноуглеродные фрагменты некоторых аминокислот и их произ­водных (аспарагиновая кислота, глицин, серии,

Часть II. ТИПОВЫЕ ПАТОЛОГИЧЕСКИЕ ПРОЦЕССЫ


глутамин), а также аммиак и С0 2 (рис. 99). Ри-боза образуется из глюкозы в пентозном цикле, в дальнейшем она может превращаться в дезок-сирибозу.

Наиболее выраженные нарушения синтеза ДНК имеют место при дефиците фолиевой кис­лоты и витамина В ]9 .

При дефиците фолиевой кислоты наруша­ется использование одноуглеродных фрагментов аминокислот для синтеза пуриновых и пирими-диновых оснований.

Витамин В 12 необходим для образования не­которых коферментных форм фолиевой кисло­ты, при дефиците которых нарушается превра­щение диоксиуридинмонофосфата в дезоксити-мидилат посредством метилирования при помо­щи N 5 , N 10 - метилентетрагидрофолата в реакции, катализируемой тимидилатсинтетазой. В резуль­тате нарушается синтез тимидина, что лимити­рует образование новых молекул ДНК. Синтез РНК при дефиците витамина В 12 и фолиевой кислоты не нарушается. Пониженное образова­ние ДНК тормозит вступление клеток в митоз вследствие удлинения синтетической фазы ми-тотического цикла. Задержка митозов ведет к замедлению клеточных делений, в результате тормозится процесс физиологической регенера­ции в костном мозге и в других быстро обновля­ющихся тканях. Задержка митозов сопровожда­ется увеличением размеров клеток, что, по-ви­димому, связано с удлинением интерфазы. Наи­более демонстративно эти изменения выражены в кроветворной ткани костного мозга: появля­ются гигантские эритробласты - мегалобласты, при созревании их образуются эритроциты боль­ших размеров - мегалоциты. Обнаруживаются также увеличенные в размерах миелоциты, ме-тамиелоциты и более зрелые гранулоциты. Ги­гантские клетки появляются и в других тканях: слизистой языка, желудка и кишечника, влага­лища. Вследствие замедления процессов регене­рации развиваются тяжелая форма малокровия (пернициозная анемия), лейкопения и тромбо-цитопения, атрофические изменения в слизис­той пищеварительного тракта.

Дефицит витамина В 12 у человека возникает при длительной вегетарианской диете, при на­рушении его всасывания в кишечнике в связи с прекращением продукции внутреннего фактора Касла в желудке, при атрофии его слизистой в результате повреждения аутоантителами; други-


I Глицин
Аспартат у i

Генные болезни человека

Генные болезни – это разнообразная по клинической картине группа заболеваний, обусловленная мутациями единичных генов.

Число известных в настоящее время моногенных наследственных заболеваний составляет около 4500. Встречаются эти заболевания с частотой 1: 500 - 1: 100000 и реже. Моногенная патология определяется примерно у 3% новорожденных и является причиной 10% младенческой смертности.

Наследуются моногенные заболевания в соответствии с законами Менделя.

Начало патогенеза любой генной болезни связано с первичным эффектом мутантного аллеля. Он может проявляться в следующих вариантах: отсутствие синтеза белка; синтез аномального белка; количественно избыточный синтез белка; количественно недостаточный синтез белка.

Патологический процесс, возникающий в результате мутации единичного гена, проявляется одновременно на молекулярном, клеточном и органном уровнях у одного индивида.

Существует несколько подходов к классификации моногенных болезней: генетический, патогенетический, клинический и др.

Классификация, основанная на генетическом принципе: согласно ей моногенные болезни можно подразделять по типам наследования – аутосомно-доминантные, аутосомно-рецессивные, Х-сцепленные доминантные, Х-сцепленные рецессивные, У-сцепленные (голандрические). Эта классификация наиболее удобна, т.к. позволяет сориентироваться относительно ситуации в семье и прогноза потомства.

Вторая классификация основана на клиническом принципе, т.е. на отнесении болезни к той или иной группе в зависимости от системы органов, наиболее вовлеченной в патологический процесс, - моногенные заболевания нервной, дыхательной, сердечно-сосудистой систем, органов зрения, кожи, психические, эндокринные и т.д.

Третья классификация основывается на патогенетическом принципе. Согласно ей все моногенные болезни можно разделить на три группы:

  1. наследственные болезни обмена веществ;
  2. моногенные синдромы множественных врожденных пороков развития;
  3. комбинированные формы.

Рассмотрим наиболее распространенные моногенные заболевания.

Нарушение обмена аминокислот .

Наследственные заболевания, обусловленные нарушением обмена аминокислот, составляют значительную часть генетической патологии детей раннего возраста. Большинство из них начинаются после достаточно короткого периода благополучного развития ребёнка, но в дальнейшем приводят к тяжелому поражению интеллекта и физических показателей. Встречается и острое течение этих заболеваний, когда состояние новорожденного резко ухудшается на 2-5-е сутки жизни. В такой ситуации высока вероятность летального исхода ещё до момента уточнения диагноза.

Абсолютное большинство этих болезней наследуется аутосомно-рецессивно. Вероятность повторного рождения больного ребёнка в семьях, где уже регистрировалась эта патология, составляет 25%.

Фенилкетонурия (ФКУ) – самое распространенное заболевание, вызванное нарушением аминокислотного обмена. Впервые было описано в 1934 году. Это заболевание наследуется аутосомно-рецессивно.

В Западной Европе один больной ФКУ обнаруживается среди 10000-17000 новорожденных, в Беларуссии и России частота ФКУ колеблется в пределах 1 случай на 6000-10000 новорожденных. Очень редко ФКУ встречается среди негров, евреев-ашкеназов, в Японии.

Основной причиной ФКУ является дефект фермента фенилаланин-4-гидроксилазы, который способствует превращению аминокислоты фенилаланина в тирозин. Фенилаланин относится к жизненно необходимым аминокислотам, которые не синтезируются в организме, а поступают с продуктами питания, содержащими белок. Фенилаланин входит в состав многих белков человека, имеет большое значение для созревания нервной системы.

Ген, определяющий структуру фенилаланин-4-гидроксилазы, локализован на длинном плече 12-й хромосомы, содержит 70000 пар нуклеиновых оснований. Чаще всего мутация этого гена вызвана заменой одного нуклеотида (90% всех случаев заболевания).

Дефект фермента при ФКУ приводит к нарушению реакции превращения фенилаланина в тирозин. В результате в организме больного накапливается избыточное количество фенилаланина и его производных: фенилпировиноградной, фенилмолочной, фенилуксусной и др. В то же время при ФКУ в организме больного формируется недостаток продуктов реакции: тирозина, являющегося важной частью обмена нейромедиаторов (катехоламинов и серотонина), и меланина, определяющего окрашивание кожи и волос у человека.

Избыток фенилаланина и его производных оказывает непосредственное повреждающее действие на нервную систему, функцию печени, обмена белков и других веществ в организме.

Беременность и роды при ФКУ у плода обычно не имеют каких-либо специфических особенностей. Новорожденных ребёнок выглядит здоровым, так как в период в период внутриутробного развития обмен веществ матери обеспечивает нормальный уровень фенилаланина в организме плода. После рождения ребенок начинает получать белок с молоком матери. Дефект фенилаланингидроксилазы препятствует обмену содержащегося в белке грудного молока фенилаланина, который начинает постепенно накапливаться в организме больного.

Первые клинические проявления ФКУ можно заметить у 2-4-месячного ребенка. Кожа и волосы начинают терять пигментацию. Глаза становятся голубыми. Часто появляются экземоподобные изменения кожных покровов: покраснения, мокнутие и шелушение щечек и складок кожи, коричневатые корочки в области волосистой части черепа. Возникает, а затем усиливается специфический запах, описываемый как «мышиный».

Ребёнок становится вялым, теряет интерес к окружающему. С 4 месяцев становится заметной задержка моторного и психического развития. Ребёнок значительно позже начинает сидеть, ходить, не всегда способен научиться разговаривать. Степень выраженности поражения нервной системы варьирует, но при отсутствии лечения обычно регистрируется глубокая умственная отсталость. Примерно у четверти больных детей во втором полугодии жизни возникают судороги. Особенно характерны кратковременные приступы, сопровождающиеся наклонами головы («кивки»). Дети с ФКУ старше 1 года обычно расторможены, эмоционально неустойчивы.

Диагностика ФКУ основывается не только на клиническом осмотре и генеалогических данных, но и на результатах лабораторных исследований (определение фенилпировиноградной кислоты в моче). Для уточнения диагноза необходимо определение уровня фенилаланина в крови ребенка (в норме содержание фенилаланина в крови не более 4 мг%, у больного ФКУ превышает 10, а иногда и 30 мг%).

Поскольку главной причиной поражения нервной системы при классической форме ФКУ является избыток фенилаланина, то ограничение его поступления с пищей в организм больного даёт возможность предупредить патологические изменения. С этой целью применяется специальная диета, обеспечивающая только минимальную возрастную потребность в фенилаланине для ребенка. Эта аминокислота входит в структуру большинства белков, поэтому из рациона больного исключаются высокобелковые продукты: мясо, рыба, творог, яичный белок, хлебобулочные изделия и др.

Раннее введение диеты (на 1-ом месяце жизни) и её регулярное соблюдение обеспечивает практически нормальное развитие ребенка.

Строгая диетотерапия рекомендуется до 10-12 лет. После этого объем обычных продуктов питания для больных ФКУ постепенно увеличивается, и пациенты переводятся на вегетарианское питание. В случае повышенной физической или умственной нагрузки рекомендуют использовать в пищу заменители белка.

В зрелом возрасте строгая диета необходима женщинам, больным ФКУ, которые планируют деторождение. Если уровень ФА крови беременной превышает нормальный, то её ребёнок будет иметь микроцефалию, врожденный порок сердца и другие аномалии.

Нарушение обмена соединительной ткани.

Абсолютное большинство этих болезней наследуется аутосомно-доминантно. При данном типе наследования больные встречаются в каждом поколении; у больных родителей рождается больной ребёнок; вероятность наследования составляет 100% - если хотя бы один родитель гомозиготен, 75% - если оба родителя гетерозиготны, и 50% - если один родитель гетерозиготен.

Синдром Марфана. Это одна из наследственных форм врожденной генерализованной патологии соединительной ткани, впервые описана в 1886 году В. Марфаном. Частота в популяции – 1: 10000-15000.

Этиологическим фактором синдрома Марфана (СМ) является мутация в гене фибриллина, локализованном в длинном плече 15-й хромосомы.

Больные синдромом Марфана имеют характерный внешний вид: они отличаются высоким ростом, астеническим телосложением, количество подкожно-жировой клетчатки у них снижено, конечности удлинены преимущественно за счет дистальных отделов, размах рук превышает длину тела (норме эти показатели совпадают). Отмечаются длинные тонкие пальцы – паукообразные (арахнодактилия), часто наблюдается «симптом большого пальца», при котором длинный 1-ый палец кисти в поперечном положении достигает ульнарного края узкой ладони. При охватывании 1-ым и 5-м пальцами запястья другой руки они обязательно перекрываются (симптом запястья). У половины больных отмечается деформация грудной клетки (воронкообразная, килеобразная), искривление позвоночника (кифоз, сколиоз), гиперподвижность суставов, клинодактилия мизинцев, сандалевидная щель. Со стороны сердечно-сосудистой системы наиболее патогномоничными являются расширение восходящей части аорты с развитием аневризмы, пролапс сердечных клапанов. Со стороны органов зрения наиболее характерны подвывихи и вывихи хрусталиков, отслойка сетчатки, миопия, гетерохромия радужки. У половины больных отмечаются паховые, диафрагмальные, пупочные и бедренные грыжи. Может наблюдаться поликистоз почек, нефроптоз, понижение слуха, глухота.

Психические и умственное развитие больных не отличается от нормы.

Прогноз жизни и здоровья определяется прежде всего состоянием сердечно-сосудистой системы. Средняя продолжительность жизни при выраженной форме синдрома Марфана около 27 лет, хотя часть больных доживает до глубокой старости.

При ведении беременных с СМ необходимо помнить о возможности расслоения аневризмы аорты и последующего её разрыва. Эти осложнения возникают обычно на поздних стадиях беременности.

Синдромом Марфана страдали президент США Авраам Линкольн, скрипач Николо Паганини.

Нарушение обмена углеводов.

Эти заболевания развиваются при врожденной недостаточности ферментов или транспортных систем мембран клеток, которые необходимы для обмена какого-либо углевода.

Клинические проявления этих патологических состояний очень разнообразны. Но для многих из них характерно начало болезни после того, как в организм ребёнка попадает соответствующий углевод. Так, галактоземия развивается с первых дней жизни ребёнка после того, как он начинает питаться молоком, фруктоземия – обычно после введения соков, сахара и блюд прикорма. Нарушение обмена углеводов часто сопровождается нарушением их всасывания в кишечнике (синдром мальабсорбции). Накапливающийся в просвете кишки сахар увеличивает содержание воды в тонком кишечнике. Всё это приводит к диарее (поносам), вздутию и болям в животе, срыгиванию.

Однако при дефектах обмена углеводов определяется поражение и других органов: нервной системы, печени, глаз и т.д.

Эти заболевания встречаются относительно редко. Исключением является врожденная лактазная недостаточность.

Галактоземия – это патология впервые была описана в 1908 году. Ген этого заболевания локализован на коротком плече 9-й хромосомы.

Причиной классической формы галактоземии является дефицит фермента галактозо-1-фосфоуридилтрансферазы, который приводит к накоплению в тканях больного ребёнка галактозо-1-фосфата. Это заболевание наследуется по аутосомно-рецессивному типу и встречается с частотой 1: 15000-50000.

Галактоза – основной фермент молока, в том числе и женского. Поэтому патологические изменения возникают с первых дней жизни ребёнка, как только он начинает вскармливаться молоком.

Сначала появляется рвота, диарея, желтушность кожи, которая не исчезает и после периода новорожденности. В дальнейшем увеличивается печень и селезенка. При приёме молочной пищи у ребенка регистрируется низкий уровень глюкозы в крови. В первые месяцы жизни ребёнка формируется помутнение хрусталиков глаз (катаракта), нарушаются функции почек. Постепенно становится заметной задержка умственного и физического развития, возможно возникновение судорог, даже смерть ребёнка на фоне очень низкого уровня глюкозы в крови или цирроза печени.

Главным в лечении этого дефекта обмена является назначение специальной диеты, не содержащей продуктов с галактозой. Раннее начало подобной терапии предупреждает поражение печени и почек, тяжелые неврологические изменения у таких больных. Возможно рассасывание катаракты. Уровень глюкозы крови нормализуется. Однако даже у пациентов, которые получают специальную диету с периода новорожденности, могут регистрироваться некоторые признаки поражения нервной системы и гипофункция яичников у девочек.

В настоящее время известны и другие типы галактоземии, которые не сопровождаются тяжелым нарушением состояния здоровья. Так, при атипичных вариантах заболевания, связанных с дефицитом галактокиназы и уридиндифосфогалактозо-4-эпимеразы, клинические проявления обычно отсутствуют. При недостаточности фермента галактокиназы единственным симптомом является катаракта. Поэтому у детей с врожденной катарактой необходимо исследовать уровень галактозы в моче и крови. При этом заболевании рано начатая диетотерапия тоже способствует восстановлению прозрачности хрусталика.

Нарушение обмена гормонов.

Врожденный гипотиреоз – один из самых распространенных дефектов обмена веществ. Это заболевание обнаруживается примерно у 1 на 4000 новорожденных Европы и Северной Америки. Несколько чаще эта патология встречается у девочек.

Причиной заболевания является полная или частичная недостаточность гормонов щитовидной железы (тиреоидных), которая сопровождается снижением скорости обменных процессов в организме. Подобные изменения приводят к торможению роста и развития ребёнка.

Врожденный гипотиреоз разделяют на первичный, вторичный и третичный.

Первичный гипотиреоз составляет около 90% всех случаев заболевания. Причиной его является поражение самой щитовидной железы. В большинстве случаев обнаруживается её отсутствие (аплазия) или недоразвитие (гипоплазия). Часто щитовидная железа оказывается не в обычной месте (на корне языка, в трахее и т.д.) Эта форма заболевания обычно регистрируется как единственный случай в семье. Однако описаны аутосомно-рецессивный и аутосомно-доминантный типы наследования порока развития щитовидной железы.

Примерно 10% всех случаев первичного гипотиреоза обусловлены дефектом образования гормонов. При этой форме заболевания отмечается увеличение размеров щитовидной железы у ребёнка (врожденный зоб). Данная патология наследуется аутосомно-рецессивно.

Вторичный и третичный гипотиреоз регистрируется только в 3-4% случаев. Эти формы заболевания обусловлены нарушением функции гипофиза и гипоталамуса, наследуется аутосомно-рецессивно.

В последние годы описаны случаи врожденного гипотиреоза, вызванные нечувствительностью тканей к действию тиреоидных гормонов. Это нарушение также характеризуется аутосомно-рецессивным типом наследования.

Недостаток тиреоидных гормонов приводит к задержке дифференцировки мозга, уменьшению количества нейронов, нейромедиаторов и других веществ. Все это вызывает угнетение функции ЦНС и задержку психического развития ребенка.

Кроме того, при гипотиреозе снижается активность ферментных систем, скорость окислительных процессов, происходит накопление недоокисленных продуктов обмена. В результате замедляется рост и дифференцировка практические всех тканей организма ребёнка (скелета, мышц, сердечно-сосудистой и иммунной систем, эндокринных желез и т.д.)

Клиническая картина всех форм гипотиреоза практически однотипна. Различается только степень тяжести заболевания. Возможно как легкое, малосимптомное течение при частично сохраненной функции тиреоидных гормонов, так и очень тяжелое состояние больного.

Врожденный гипотиреоз развивается постепенно в течение первых месяцев жизни ребенка. Несколько позже заболевание проявляется у детей, находящихся на естественном вскармливании, так как грудное молоко содержит тиреоидные гормоны.

У 10-15% больных детей первые признаки гипотиреоза можно обнаружить уже на первом месяце жизни. Роды таким ребёнком обычно происходят позже 40 недель (переношенная беременность). Новорожденные с этим заболеванием имеют большую массу тела, часто выше 4 кг. При осмотре такого ребёнка можно отметить отёчность тканей лица, большой язык, лежащий на губах, отёки в виде «подушечек» на тыльной поверхности кистей и стоп. В дальнейшем наблюдается грубый голос при плаче.

Больной ребёнок плохо удерживает тепло, вяло сосёт. Часто желтушность кожи сохраняется до 1 месяца и более.

Полного развития клиническая картина обычно достигает к 3-6 месяцам. Ребенок начинает отставать в росте, плохо набирает массу тела, лениво сосет. Кожа больного становится сухой, желтовато-бледной, утолщенной, часто шелушится. Обнаруживается большой язык, низкий хриплый голос, ломкие, сухие волосы, обычно холодные кисти и стопы, запоры. Мышечный тонус снижен. В этот период формируются особенности лицевого скелета: широкая запавшая переносица, широко расставленные глаза, низкий лоб.

После 5-6 месяцев становится заметной нарастающая задержка психомоторного и физического развития больного ребенка. Ребенок значительно позже начинает сидеть, ходить, формируется умственная отсталость. Изменяются пропорции скелета: укорачивается шея, конечности и пальцы, усиливаются грудной кифоз и поясничный лордоз, кисти и стопы становятся широкими. Ребенок начинает значительно отставать в росте. Сохраняются и усугубляются деформация лица, восковая бледность и утолщение кожи, низкий грубый голос. Мышечный тонус снижен. Больные страдают запорами. При осмотре обращается внимание на увеличение камер сердца, глухость его тонов, брадикардию, вздутый живот, пупочные грыжи. Лабораторное исследование обнаруживает нарушение возрастной дифференцировки скелета, анемию, гиперхолестеринемию.

Диагноз гипотиреоза подтверждается исследованием тиреотропного гормона гипофиза (ТТГ), тиреоидных гормонов: трийодтиронина (ТЗ) и тироксина (Т4) крови. Для больных характерно снижение уровня Т3 и Т4 крови. Уровень ТТГ увеличен при первичной форме заболевания и является низким при вторичном и третичном гипотиреозе.

Главным в лечении детей с врожденным гипотиреозом является постоянная, пожизненная терапия препаратами гормонов щитовидной железы. Если ребенок начинает принимать эти лекарственные средства на первом месяце жизни, то возможно обратное развитие всех патологических изменений в нервной системе. При условии раннего начала лечения и постоянного приема необходимой дозы тиреоидных гормонов под контролем их содержания в крови в абсолютном большинстве случаев психомоторное и физическое развитие больных детей оказывается в пределах нормы.

Особенности ухода за больными с наследственной патологией.

Пациенты, имеющие наследственную патологию, нуждаются в постоянном наблюдении медицинских работников. Хронические прогрессирующее течение заболевания делает необходимым длительное пребывание в стационарах разного профиля, частые обращения в амбулаторные учреждения.

Уход за такими больными представляет собой сложную задачу. Часто приходится иметь дело не с одним человеком, а с целой семьей, так как даже физически здоровые родственники могут нуждаться в психологической поддержке, помощи, а иногда и в превентивном лечении.

Режим дня больного с наследственной патологией должен быть по возможности приближен к обычному для соответствующего возраста. Организация прогулок, игр, учёбы, общения со сверстниками способствуют социальной адаптации больных и их семей. При заболеваниях, характеризующихся нарушением умственного развития, важно обеспечить частое общение с ребёнком, разнообразие игрушек и пособий, развивающие занятия. Формированию моторных навыков помогают регулярные занятия лечебной физкультурой и массажем.

Питание больных должно быть сбалансировано по основным ингредиентам и соответствовать возрасту. В случаях необходимости кормления через зонд при нарушении жевания и глотания дети должны получать протертое мясо, овощи и фрукты в соответствии с возрастом, а не только молоко и каши. Если такой ребёнок будет вскармливаться только молоком и кашами, он будет отставать по массе и длине тела, возникнет анемия и иммунодефицитное состояние.

Особого внимания заслуживает специальная диетотерапия при некоторых заболеваниях обмена веществ (фенилкетонурии, галактоземии, гиперхолестеринемии и т.д.) Необходима постоянная помощь родителям и семьям больных в организации питания. Кроме того, подобная диетотерапия должна сопровождаться регулярным контролем показателей массы и длины тела ребёнка: на 1-м голу жизни – ежемесячно, до трех лет – 1 раз в 3 месяца до подросткового возраста – каждое полугодие.

Дети с наследственной патологией часто страдают нарушением естественных отправлений. Для предупреждения запоров в питание больных вводят продукты, богатые клетчаткой, соки. При отсутствии самостоятельного стула нужно поставить очистительную клизму. Некоторые болезни обмена веществ и пороки развития органов желудочно-кишечного тракта сопровождаются учащенным стулом. В таких случаях нужно особенно тщательно следить за сухостью кожи ребёнка. Каждый раз ребенка необходимо обмыть теплой водой, промокнуть кожу мягкой салфеткой и обработать складки кожи растительным маслом или детским кремом.

Наследственные заболевания могут сопровождаться нарушением мочеиспускания. При такой патологии проводится учёт количества выпитой жидкости. При атонии мочевого пузыря, вызванной поражением нервной системы, используется его катетеризация.

Больные с наследственной патологией нуждаются в создании оптимальных условий по температуре и влажности в помещениях, где они находятся, поскольку такие дети часто страдают нарушением терморегуляции и склонны к перегреванию и переохлаждению.

Кроме того, комнаты, в которых ребенок проводит время, должны быть освобождены от опасных предметов (колющих, режущих, очень горячих и т.д.)

Пациенты, вынужденные длительное время проводить в лежащем положении, могут иметь пролежни. С целью их предупреждения необходимы: частая смена нательного и постельного белья; разглаживание складок на ткани, соприкасающейся с кожей больного; использование специальных подкладочных резиновых кругов или тканевых матрасов; систематическая смена положения тела больного. В таких случаях кожу больного необходимо обрабатывать камфорным спиртом или одеколоном 2-3 раза в день и затем присыпать тальком.

Важнейшей частью ухода за пациентами с наследственной патологией является работа с их родственниками. Доброжелательное отношение к больному, разъяснение родителям сущности заболевания, освобождение их от чувства вины перед ребенком, создание положительной установки на лечение – все это снижает тревожность в семье и улучшает результаты реабилитационных мероприятий.